Graphene-Fiber-Based Supercapacitors Favor N-Methyl-2-pyrrolidone/Ethyl Acetate as the Spinning Solvent/Coagulant Combination

被引:46
作者
He, Nanfei [1 ]
Pan, Qin [1 ]
Liu, Yixin [1 ]
Gao, Wei [1 ]
机构
[1] North Carolina State Univ, Dept Text Engn Chem & Sci, Raleigh, NC 27606 USA
基金
美国国家科学基金会;
关键词
graphene oxide; fiber supercapacitors; graphene fibers; wet spinning; PVA electrolyte; CAPACITIVE ENERGY-STORAGE; ALL-SOLID-STATE; HIGH-PERFORMANCE; MICRO-SUPERCAPACITORS; WEARABLE ELECTRONICS; CARBON NANOTUBES; LIQUID-CRYSTALS; FLEXIBLE SUPERCAPACITORS; YARN SUPERCAPACITORS; GRAPHITE OXIDE;
D O I
10.1021/acsami.7b05982
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
One-dimensional flexible fiber supercapacitors (FSCs) have attracted great interest as promising energy-storage units that can be seamlessly incorporated into textiles via weaving, knitting, or braiding. The major challenges in this field are to develop tougher and more efficient FSCs with a relatively easy and scalable process. Here, we demonstrate a wet-spinning process to produce graphene oxide (GO) fibers from GO dispersions in N-methyl-2-pyrrolidone (NMP), with ethyl acetate as the coagulant. Upon chemical reduction of GO, the resulting NMP-based reduced GO (rGO) fibers (rGO@NMP-Fs) are twice as high in the surface area and toughness but comparable in tensile strength and conductivity as that of.the water-based rGO fibers (rGO@H2O-Fs). When assembled into parallel FSCs, rGO@NMP-F-based supercapacitors (rGO@NMP-FSCs) offered a specific capacitance of 196.7 F cm(-3) (147.5 mF cm(-2)), five times higher than that of rGO@H2O-F-based supercapacitors (rGO@ H2O-FSCs) and also higher than most existing wet-spun rGO-FSCs, as well as those FSCs built with metal wires, graphene/carbon nanotube (CNT) fibers, or even pseudocapacitive materials. In addition, our rGO@NMP-FSCs can provide good bending and cycling stability. The energy density of our rGO@NMP-FSCs reaches ca. 6.8 mWh cm(-3), comparable to that of a Li thin-film battery (4 V/500 mu Ah).
引用
收藏
页码:24568 / 24576
页数:9
相关论文
共 67 条
[1]   High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles [J].
Aboutalebi, Seyed Hamed ;
Jalili, Rouhollah ;
Esrafilzadeh, Dorna ;
Salari, Maryam ;
Gholamvand, Zahra ;
Yamini, Sima Aminorroaya ;
Konstantinov, Konstantin ;
Shepherd, Roderick L. ;
Chen, Jun ;
Moulton, Simon E. ;
Innis, Peter Charles ;
Minett, Andrew I. ;
Razal, Joselito M. ;
Wallace, Gordon G. .
ACS NANO, 2014, 8 (03) :2456-2466
[2]   Processing and characterization of polyethersulfone wet-spun nanocomposite fibres containing multiwalled carbon nanotubes [J].
Bouchard, J. ;
Cayla, A. ;
Odent, S. ;
Lutz, V. ;
Devaux, E. ;
Campagne, C. .
SYNTHETIC METALS, 2016, 217 :304-313
[3]   Study on the coagulation mechanism of wet-spinning PAN fibers [J].
Chen, Juan ;
Wang, Cheng-guo ;
Dong, Xing-guang ;
Liu, Huan-zhang .
JOURNAL OF POLYMER RESEARCH, 2006, 13 (06) :515-519
[4]   Toward high performance graphene fibers [J].
Chen, Li ;
He, Yuling ;
Chai, Songgang ;
Qiang, Hong ;
Chen, Feng ;
Fu, Qiang .
NANOSCALE, 2013, 5 (13) :5809-5815
[5]   Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors [J].
Chen, Shaohua ;
Ma, Wujun ;
Cheng, Yanhua ;
Weng, Zhe ;
Sun, Bin ;
Wang, Lu ;
Chen, Wenping ;
Li, Feng ;
Zhu, Meifang ;
Cheng, Hui-Ming .
NANO ENERGY, 2015, 15 :642-653
[6]   Flexible Supercapacitor Made of Carbon Nanotube Yarn with Internal Pores [J].
Choi, Changsoon ;
Lee, Jae Ah ;
Choi, A. Young ;
Kim, Youn Tae ;
Lepro, Xavier ;
Lima, Marcio D. ;
Baughman, Ray H. ;
Kim, Seon Jeong .
ADVANCED MATERIALS, 2014, 26 (13) :2059-2065
[7]   Graphene-based macroscopic assemblies and architectures: an emerging material system [J].
Cong, Huai-Ping ;
Chen, Jia-Fu ;
Yu, Shu-Hong .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (21) :7295-7325
[8]   Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
SCIENTIFIC REPORTS, 2012, 2
[9]   Understanding key wet spinning parameters in an ionic liquid spun regenerated cellulosic fibre [J].
De Silva, Rasike ;
Vongsanga, Kylie ;
Wang, Xungai ;
Byrne, Nolene .
CELLULOSE, 2016, 23 (04) :2741-2751
[10]   Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast [J].
Ding, LH ;
Stilwell, J ;
Zhang, TT ;
Elboudwarej, O ;
Jiang, HJ ;
Selegue, JP ;
Cooke, PA ;
Gray, JW ;
Chen, FQF .
NANO LETTERS, 2005, 5 (12) :2448-2464