共 50 条
TPGraph: a hospital readmission prediction method based on temporal phenotype graphs
被引:0
作者:
Cui, Lizhen
[1
]
Xu, Xiangzhen
[1
]
Liu, Shijun
[2
]
Li, Hui
[2
]
Liu, Zhiqi
[2
]
机构:
[1] Shandong Univ, Sch Software Engn, Jinan 250101, Shandong, Peoples R China
[2] Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Shandong, Peoples R China
关键词:
healthcare;
temporal phenotype;
TPGraph;
temporal phenotype graphs;
hospital readmission prediction;
frequent subgraph mining;
optimal xpression coefficient;
temporal graph;
medical event sequence;
AGM;
coronary heart disease;
RISK;
D O I:
10.1504/IJDMB.2018.094782
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Accurate hospital readmission prediction in a vast amount of healthcare data is important to the reducing healthcare costs and improving treatment patterns. Due to the temporality and sequentiality of the medical records, we propose a method for predicting hospital readmission based on temporal phenotype graphs in this paper, namely the TPGraph. Firstly, we constructed a temporal graph for each patient based on their medical event sequence. Then, we developed an approach to identify the most significant frequent subgraphs as temporal phenotype graphs. After that, an improved greedy algorithm was designed to obtain the optimal expression coefficient of temporal phenotype graphs. Finally, the optimal expression coefficient as a feature, we use random forest algorithm to predict whether the patient will perform hospital readmission. Our experiments demonstrate the effectiveness of our proposed method, and show that our approach to gain better predictive performance compared with the baselines.
引用
收藏
页码:247 / 266
页数:20
相关论文
共 50 条