Burgers-Korteweg-de Vries equation and its traveling solitary waves

被引:19
作者
Feng, Zhao-sheng [1 ]
Meng, Qing-guo
机构
[1] Univ Texas, Dept Math, Edinburg, TX 78541 USA
[2] Tianjin Univ Technol & Educ, Dept Math Sci, Tianjin 300222, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2007年 / 50卷 / 03期
基金
美国国家科学基金会;
关键词
traveling wave; autonomous system; Lie group; infinitesimal generator; Burgers-KdV equation; Painleve analysis;
D O I
10.1007/s11425-007-0007-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Burgers-Korteweg-de Vries equation has wide applications in physics, engineering and fluid mechanics. The Poincare phase plane analysis reveals that the Burgers-Korteweg-de Vries equation has neither nontrivial bell-profile traveling solitary waves, nor periodic waves. In the present paper, we show two approaches for the study of traveling solitary waves of the Burgers-Korteweg-de Vries equation: one is a direct method which involves a few coordinate transformations, and the other is the Lie group method. Our study indicates that the Burgers-Korteweg-de Vries equation indirectly admits one-parameter Lie groups of transformations with certain parametric conditions and a traveling solitary wave solution with an arbitrary velocity is obtained accordingly. Some incorrect statements in the recent literature are clarified.
引用
收藏
页码:412 / 422
页数:11
相关论文
共 52 条
[31]   A NON-LINEAR EQUATION INCORPORATING DAMPING AND DISPERSION [J].
JOHNSON, RS .
JOURNAL OF FLUID MECHANICS, 1970, 42 :49-&
[32]   SHALLOW-WATER WAVES ON A VISCOUS-FLUID - UNDULAR BORE [J].
JOHNSON, RS .
PHYSICS OF FLUIDS, 1972, 15 (10) :1693-&
[33]  
KARAHARA T, 1970, J PHYS SOC JPN, V27, P1321
[34]  
Korteweg DJ., 1895, Lond Edinb Dub Philos Mag J Sci, V39, P422, DOI [10.1080/14786449508620739, DOI 10.1080/14786449508620739]
[35]  
LAWDEN DF, 1989, ELLIPTIC FUNCTIONS A
[36]  
Liu S. D., 1994, SOLITONS TURBULENT F
[37]  
LIU SD, 1992, SCI CHINA SER A, V35, P576
[38]   SINGLE-PHASE AVERAGING AND TRAVELING-WAVE SOLUTIONS OF THE MODIFIED BURGERS-KORTEWEG-DEVRIES EQUATION [J].
MCINTOSH, I .
PHYSICS LETTERS A, 1990, 143 (1-2) :57-61
[39]  
OLVE RPJ, 1993, APPL LIE GROUPS DIFF
[40]  
Paladin Vivian, 1997, A modern introduction to the mathematical theory of water waves, pix