Burgers-Korteweg-de Vries equation and its traveling solitary waves

被引:19
作者
Feng, Zhao-sheng [1 ]
Meng, Qing-guo
机构
[1] Univ Texas, Dept Math, Edinburg, TX 78541 USA
[2] Tianjin Univ Technol & Educ, Dept Math Sci, Tianjin 300222, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2007年 / 50卷 / 03期
基金
美国国家科学基金会;
关键词
traveling wave; autonomous system; Lie group; infinitesimal generator; Burgers-KdV equation; Painleve analysis;
D O I
10.1007/s11425-007-0007-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Burgers-Korteweg-de Vries equation has wide applications in physics, engineering and fluid mechanics. The Poincare phase plane analysis reveals that the Burgers-Korteweg-de Vries equation has neither nontrivial bell-profile traveling solitary waves, nor periodic waves. In the present paper, we show two approaches for the study of traveling solitary waves of the Burgers-Korteweg-de Vries equation: one is a direct method which involves a few coordinate transformations, and the other is the Lie group method. Our study indicates that the Burgers-Korteweg-de Vries equation indirectly admits one-parameter Lie groups of transformations with certain parametric conditions and a traveling solitary wave solution with an arbitrary velocity is obtained accordingly. Some incorrect statements in the recent literature are clarified.
引用
收藏
页码:412 / 422
页数:11
相关论文
共 52 条
[1]  
[Anonymous], 1987, SOV PHYS DOKL
[2]  
[Anonymous], MATH PRACTICE THEORY
[3]  
[Anonymous], 1964, Handbook of mathematical functions
[4]   ON CNOIDAL WAVES AND BORES [J].
BENJAMIN, TB ;
LIGHTHILL, MJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1954, 224 (1159) :448-460
[5]   LONG WAVES ON LIQUID FILMS [J].
BENNEY, DJ .
JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (02) :150-&
[6]  
Bluman G. W., 1991, SYMMETRIES DIFFERENT
[7]   TRAVELING-WAVE SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGERS EQUATION [J].
BONA, JL ;
SCHONBEK, ME .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1985, 101 :207-226
[8]  
Burgers J M., 1939, T ROY NETH ACAD SCI, V17, P1
[9]   KORTEWEG-DE VRIES-BURGERS EQUATION [J].
CANOSA, J ;
GAZDAG, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (04) :393-403
[10]  
Dauletiyarov K.Z., 1984, ZH VYCHISL MAT MAT F, V24, P383