On a class of first order congruences of lines

被引:2
作者
De Poi, Pietro [1 ]
Mezzetti, Emilia [2 ]
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
[2] Univ Trieste, Dipartimento Matemat & Informat, I-34127 Trieste, Italy
关键词
Congruences of lines; completely exceptional Monge-Ampere equations; EQUATIONS; P-4;
D O I
10.36045/bbms/1260369400
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a class of new examples of congruences of lines of order one, i.e. the congruences associated to the completely exceptional Monge-Ampere equations. We prove that they are in general not linear, and that through a general point of the focal locus there passes a planar pencil of lines of the congruence. In particular, the completely exceptional Monge-Ampere equations are of Temple type.
引用
收藏
页码:805 / 821
页数:17
相关论文
共 11 条
[1]   Systems of conservation laws of Temple class, equations of associativity and linear congruences in P4 [J].
Agafonov, SI ;
Ferapontov, EV .
MANUSCRIPTA MATHEMATICA, 2001, 106 (04) :461-488
[2]  
[Anonymous], 2013, ALGEBRAIC GEOM
[3]  
BOILLAT G, 1992, CR ACAD SCI I-MATH, V315, P1211
[4]   On globally generated vector bundles on projective spaces [J].
Carlos Sierra, Jose ;
Ugaglia, Luca .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (11) :2141-2146
[5]  
Ciliberto C., 1992, J. Algebraic Geom, V1, P231
[6]   On first order congruences of lines in P4 with irreducible fundamental surface [J].
De Poi, P .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (04) :363-378
[7]   Threefolds in P5 with one apparent quadruple point [J].
De Poi, P .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (04) :1927-1947
[8]  
De Poi P., 2005, PROJECTIVE VARIETIES, P209, DOI [10.1515/9783110199703.209, DOI 10.1515/9783110199703.209]
[9]  
De Poi P, 2008, GEOMETRIAE DEDICATA, V131, P213, DOI 10.1007/s10711-007-9228-7
[10]  
DEPOI P, 2004, PORT MATH, V61