Tailoring of the electronic properties of ZnO-polyacrylonitrile nanofibers: Experiment and theory

被引:34
作者
Iatsunskyi, Igor [1 ]
Vasylenko, Andrij [2 ,3 ]
Viter, Roman [4 ]
Kempinski, Mateusz [1 ]
Nowaczyk, Grzegosz [1 ]
Jurga, Stefan [1 ,5 ]
Bechelany, Mikhael [6 ]
机构
[1] Adam Mickiewicz Univ, NanoBioMed Ctr, Umultowska 85, PL-61614 Poznan, Poland
[2] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
[3] Inst Condensed Matter Phys NAS Ukraine, 1 Sventsitskogo Str, UA-79011 Lvov, Ukraine
[4] Univ Latvia, Inst Atom Phys & Spect, 19 Raina Blvd, LV-1586 Riga, Latvia
[5] Adam Mickiewicz Univ, Dept Macromol Phys, Umultowska 85, PL-61614 Poznan, Poland
[6] Univ Montpellier, CNRS, European Inst Membranes, IEM,ENSCM,UM,UMR 5635, Pl Eugene Bataillon, F-34095 Montpellier, France
关键词
ZnO; Polyacrylonitrile; Nanofibers; Atomic layer deposition; DFT calculations; OPTICAL-PROPERTIES; WORK FUNCTION; ENERGY-LOSS; XPS; NANOWIRES; MECHANISM; TRANSPORT; FILMS; ALD;
D O I
10.1016/j.apsusc.2017.03.111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the study of ZnO-polyacrylonitrile (ZnO-PAN) nanofibers fabricated by the combination of electrospinning and atomic layer deposition. The latter technique enables us to control the size of the surface of ZnO 1D nanostructures and hence its effectiveness for energy and biosensor applications. We observe the tendency of ZnO to form nanograins with increase of the layer thickness, and investigate the influence of the grain size on the electronic properties of the nanofibers. It is demonstrated that the ZnO work function (Phi) is strongly affected by surface band bending in the ZnO layer. The observed change of Phi in ZnO layers results from the curvature of the grain surface as well as the presence of the hydroxyl and oxygen groups, adsorbed on ZnO surface and is in a good agreement with theoretical prediction. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:494 / 501
页数:8
相关论文
共 45 条
[1]   Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends [J].
Abeykoon, Nimali C. ;
Bonso, Jeliza S. ;
Ferraris, John P. .
RSC ADVANCES, 2015, 5 (26) :19865-19873
[2]   ZnO 1D nanostructures designed by combining atomic layer deposition and electrospinning for UV sensor applications [J].
Abou Chaaya, Adib ;
Bechelany, Mikhael ;
Balme, Sebastien ;
Miele, Philippe .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (48) :20650-20658
[3]   Measuring the work function at a nanobelt tip and at a nanoparticle surface [J].
Bai, XD ;
Wang, EG ;
Gao, PX ;
Wang, ZL .
NANO LETTERS, 2003, 3 (08) :1147-1150
[4]   Tuning of Structural and Optical Properties of Graphene/ZnO Nanolaminates [J].
Baitimirova, Margarita ;
Viter, Roman ;
Andzane, Jana ;
van der Lee, Arie ;
Voiry, Damien ;
Iatsunskyi, Igor ;
Coy, Emerson ;
Mikoliunaite, Lina ;
Tumenas, Saulius ;
Zaleski, Karol ;
Balevicius, Zigmas ;
Baleviciute, Ieva ;
Ramanaviciene, Almira ;
Ramanavicius, Arunas ;
Jurga, Stefan ;
Erts, Donats ;
Bechelany, Mikhael .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (41) :23716-23725
[5]   Nanoscale piezoelectric response of ZnO nanowires measured using a nanoindentation technique [J].
Broitman, Esteban ;
Soomro, Muhammad Yousuf ;
Lu, Jun ;
Willander, Magnus ;
Hultman, Lars .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (26) :11113-11118
[6]   AUGER PARAMETER MEASUREMENTS OF ZINC-COMPOUNDS RELEVANT TO ZINC TRANSPORT IN THE ENVIRONMENT [J].
DAKE, LS ;
BAER, DR ;
ZACHARA, JM .
SURFACE AND INTERFACE ANALYSIS, 1989, 14 (1-2) :71-75
[7]   Micro-Raman and XPS studies of pure ZnO ceramics [J].
Das, J. ;
Pradhan, S. K. ;
Sahu, D. R. ;
Mishra, D. K. ;
Sarangi, S. N. ;
Nayak, B. B. ;
Verma, S. ;
Roul, B. K. .
PHYSICA B-CONDENSED MATTER, 2010, 405 (10) :2492-2497
[8]   Controlling the growth and luminescence properties of well-faceted ZnO nanorods [J].
De la Rosa, E. ;
Sepulveda-Guzman, S. ;
Reeja-Jayan, B. ;
Torres, A. ;
Salas, P. ;
Elizondo, N. ;
Yacaman, M. Jose .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (24) :8489-8495
[9]   Electron energy-loss spectroscopy study of ZnO nanobelts [J].
Ding, Y ;
Wang, ZL .
JOURNAL OF ELECTRON MICROSCOPY, 2005, 54 (03) :287-291
[10]   Ultraviolet Electroluminescence from ZnS@ZnO Core-Shell Nanowires/p-GaN Introduced by Exciton Localization [J].
Fang, Xuan ;
Wei, Zhipeng ;
Yang, Yahui ;
Chen, Rui ;
Li, Yongfeng ;
Tang, Jilong ;
Fang, Dan ;
Jia, Huimin ;
Wang, Dengkui ;
Fan, Jie ;
Ma, Xiaohui ;
Yao, Bin ;
Wang, Xiaohua .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (03) :1661-1666