A Statistical Approach for Testing Cross-Phenotype Effects of Rare Variants

被引:54
作者
Broadaway, K. Alaine [1 ]
Cutler, David J. [1 ]
Duncan, Richard [1 ]
Moore, Jacob L. [2 ]
Ware, Erin B. [3 ,4 ]
Jhun, Min A. [3 ]
Bielak, Lawrence F. [3 ]
Zhao, Wei [3 ]
Smith, Jennifer A. [3 ]
Peyser, Patricia A. [3 ]
Kardia, Sharon L. R. [3 ]
Ghosh, Debashis [5 ]
Epstein, Michael P. [1 ]
机构
[1] Emory Univ, Dept Human Genet, Atlanta, GA 30322 USA
[2] Univ Calif Davis, Dept Ecol & Evolut, Davis, CA 95616 USA
[3] Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Inst Social Res, Ann Arbor, MI 48104 USA
[5] Colorado Sch Publ Hlth, Dept Biostat & Informat, Aurora, CO 80045 USA
基金
美国国家科学基金会;
关键词
COMMON SNPS EXPLAIN; P-SELECTIN GENE; QUANTITATIVE TRAITS; LARGE PROPORTION; ASSOCIATION; HERITABILITY; DISEASE; SET; PLEIOTROPY; REGRESSION;
D O I
10.1016/j.ajhg.2016.01.017
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Increasing empirical evidence suggests that many genetic variants influence multiple distinct phenotypes. When cross-phenotype effects exist, multivariate association methods that consider pleiotropy are often more powerful than univariate methods that model each phenotype separately. Although several statistical approaches exist for testing cross-phenotype effects for common variants, there is a lack of similar tests for gene-based analysis of rare variants. In order to fill this important gap, we introduce a statistical method for cross-phenotype analysis of rare variants using a nonparametric distance-covariance approach that compares similarity in multivariate phenotypes to similarity in rare-variant genotypes across a gene. The approach can accommodate both binary and continuous phenotypes and further can adjust for covariates. Our approach yields a closed-form test whose significance can be evaluated analytically, thereby improving computational efficiency and permitting application on a genome-wide scale. We use simulated data to demonstrate that our method, which we refer to as the Gene Association with Multiple Traits (GAMuT) test, provides increased power over competing approaches. We also illustrate our approach using exome-chip data from the Genetic Epidemiology Network of Arteriopathy.
引用
收藏
页码:525 / 540
页数:16
相关论文
共 87 条
[1]   A general test of association for quantitative traits in nuclear families [J].
Abecasis, GR ;
Cardon, LR ;
Cookson, WOC .
AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 66 (01) :279-292
[2]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[3]   Multiple phenotype modeling in gene-mapping studies of quantitative traits: Power advantages [J].
Allison, DB ;
Thiel, B ;
St Jean, P ;
Elston, RC ;
Infante, MC ;
Schork, NJ .
AMERICAN JOURNAL OF HUMAN GENETICS, 1998, 63 (04) :1190-1201
[4]   A Phenomics-Based Strategy Identifies Loci on APOC1, BRAP, and PLCG1 Associated with Metabolic Syndrome Phenotype Domains [J].
Avery, Christy L. ;
He, Qianchuan ;
North, Kari E. ;
Ambite, Jose L. ;
Boerwinkle, Eric ;
Fornage, Myriam ;
Hindorff, Lucia A. ;
Kooperberg, Charles ;
Meigs, James B. ;
Pankow, James S. ;
Pendergrass, Sarah A. ;
Psaty, Bruce M. ;
Ritchie, Marylyn D. ;
Rotter, Jerome I. ;
Taylor, Kent D. ;
Wilkens, Lynne R. ;
Heiss, Gerardo ;
Lin, Dan Yu .
PLOS GENETICS, 2011, 7 (10)
[5]  
BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.ge.23.120189.002005
[6]   Population genetics - making sense out of sequence [J].
Chakravarti, A .
NATURE GENETICS, 1999, 21 (Suppl 1) :56-60
[7]   Network properties of human disease genes with pleiotropic effects [J].
Chavali, Sreenivas ;
Barrenas, Fredrik ;
Kanduri, Kartiek ;
Benson, Mikael .
BMC SYSTEMS BIOLOGY, 2010, 4
[8]   Variations on a theme: Cataloging human DNA sequence variation [J].
Collins, FS ;
Guyer, MS ;
Chakravarti, A .
SCIENCE, 1997, 278 (5343) :1580-1581
[9]   Familial aggregation of hypertension treatment and control in the genetic epidemiology network of arteriopathy (GENOA) study [J].
Daniels, PR ;
Kardia, SLR ;
Hanis, CL ;
Brown, CA ;
Hutchinson, R ;
Boerwinkle, E ;
Turner, ST .
AMERICAN JOURNAL OF MEDICINE, 2004, 116 (10) :676-681
[10]  
Davì G, 1998, CIRCULATION, V97, P953