Whole-body PET estimation from low count statistics using cycle-consistent generative adversarial networks

被引:112
作者
Lei, Yang [1 ]
Dong, Xue [1 ]
Wang, Tonghe [1 ,2 ]
Higgins, Kristin [1 ,2 ]
Liu, Tian [1 ,2 ]
Curran, Walter J. [1 ,2 ]
Mao, Hui [2 ,3 ]
Nye, Jonathon A. [3 ]
Yang, Xiaofeng [1 ,2 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
PET; deep learning; low count statistics; LOW-DOSE CT; MALIGNANCIES; PERFORMANCE; SIGNATURE;
D O I
10.1088/1361-6560/ab4891
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Lowering either the administered activity or scan time is desirable in PET imaging as it decreases the patient's radiation burden or improves patient comfort and reduces motion artifacts. But reducing these parameters lowers overall photon counts and increases noise, adversely impacting image contrast and quantification. To address this low count statistics problem, we propose a cycle-consistent generative adversarial network (Cycle GAN) model to estimate diagnostic quality PET images using low count data. Cycle GAN learns a transformation to synthesize diagnostic PET images using low count data that would be indistinguishable from our standard clinical protocol. The algorithm also learns an inverse transformation such that cycle low count PET data (inverse of synthetic estimate) generated from synthetic full count PET is close to the true low count PET. We introduced residual blocks into the generator to catch the differences between low count and full count PET in the training dataset and better handle noise. The average mean error and normalized mean square error in whole body were -0.14% +/- 1.43% and 0.52% +/- 0.19% with Cycle GAN model, compared to 5.59% +/- 2.11% and 3.51% +/- 4.14% on the original low count PET images. Normalized cross-correlation is improved from 0.970 to 0.996, and peak signal-to-noise ratio is increased from 39.4 dB to 46.0 dB with proposed method. We developed a deep learning-based approach to accurately estimate diagnostic quality PET datasets from one eighth of photon counts, and has great potential to improve low count PET image quality to the level of diagnostic PET used in clinical settings.
引用
收藏
页数:12
相关论文
共 38 条
[1]   Multi-Level Canonical Correlation Analysis for Standard-Dose PET Image Estimation [J].
An, Le ;
Zhang, Pei ;
Adeli, Ehsan ;
Wang, Yan ;
Ma, Guangkai ;
Shi, Feng ;
Lalush, David S. ;
Lin, Weili ;
Shen, Dinggang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (07) :3303-3315
[2]   Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone [J].
Andersen, Flemming Littrup ;
Ladefoged, Claes Nohr ;
Beyer, Thomas ;
Keller, Sune Hogild ;
Hansen, Adam Espe ;
Hojgaard, Liselotte ;
Kjaer, Andreas ;
Law, Ian ;
Holm, Soren .
NEUROIMAGE, 2014, 84 :206-216
[3]   Standards for PET Image Acquisition and Quantitative Data Analysis [J].
Boellaard, Ronald .
JOURNAL OF NUCLEAR MEDICINE, 2009, 50 :11S-20S
[4]  
Botchkarev A., 2019, Performance Metrics, V14, P45
[5]   Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review [J].
Chawla, Soni C. ;
Federman, Noah ;
Zhang, Di ;
Nagata, Kristen ;
Nuthakki, Soujanya ;
McNitt-Gray, Michael ;
Boechat, M. Ines .
PEDIATRIC RADIOLOGY, 2010, 40 (05) :681-686
[6]   Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network [J].
Chen, Hu ;
Zhang, Yi ;
Kalra, Mannudeep K. ;
Lin, Feng ;
Chen, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) :2524-2535
[7]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694
[8]  
Czernin J, 2007, J NUCL MED, V48, p78S
[9]   Dose Optimization in Nuclear Medicine [J].
Fahey, Frederic ;
Stabin, Michael .
SEMINARS IN NUCLEAR MEDICINE, 2014, 44 (03) :193-201
[10]   Operational and Dosimetric Aspects of Pediatric PET/CT [J].
Fahey, Frederic H. ;
Goodkind, Alison ;
MacDougall, Robert D. ;
Oberg, Leah ;
Ziniel, Sonja I. ;
Cappock, Richard ;
Callahan, Michael J. ;
Kwatra, Neha ;
Treves, S. Ted ;
Voss, Stephan D. .
JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (09) :1360-1366