Consistent Prediction of Mutation Effect on Drug Binding in HIV-1 Protease Using Alchemical Calculations

被引:26
作者
Bastys, Tomas [1 ,2 ]
Gapsys, Vytautas [3 ]
Doncheva, Nadezhda T. [1 ,4 ]
Kaiser, Rolf [5 ]
de Groot, Bert L. [3 ]
Kalinina, Olga V. [1 ]
机构
[1] Max Planck Inst Informat, Dept Computat Biol & Appl Algorithm, D-66123 Saarbrucken, Germany
[2] Univ Saarland, Saarbrucken Grad Sch Comp Sci, D-66123 Saarbrucken, Germany
[3] Max Planck Inst Biophys Chem, Dept Theoret & Computat Biophys, Computat Biomol Dynam Grp, D-37077 Gottingen, Germany
[4] Univ Copenhagen, Fac Hlth & Med Sci, DK-2200 Copenhagen, Denmark
[5] Univ Clin Cologne, Inst Virol, D-50935 Cologne, Germany
基金
欧盟地平线“2020”;
关键词
HUMAN-IMMUNODEFICIENCY-VIRUS; MOLECULAR-DYNAMICS SIMULATIONS; CATALYTIC ASPARTYL GROUPS; FREE-ENERGY CALCULATIONS; TYPE-1; PROTEASE; RESISTANT MUTATIONS; ACCURATE PREDICTION; CRYSTAL-STRUCTURES; PROTONATION STATE; CROSS-RESISTANCE;
D O I
10.1021/acs.jctc.7b01109
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite a large number of antiretroviral drugs targeting HIV-1 protease for inhibition, mutations in this protein during the course of patient treatment can render them inefficient. This emerging resistance inspired numerous computational studies of the HIV-1 protease aimed at predicting the effect of mutations on drug binding in terms of free binding energy Delta G, as well as in mechanistic terms. In this study, we analyze ten different protease-inhibitor complexes carrying major resistance-associated mutations (RAMs) G48V, I50V, and L90M using molecular dynamics simulations. We demonstrate that alchemical free energy calculations can consistently predict the effect of mutations on drug binding. By explicitly probing different protonation states of the catalytic aspartic dyad, we reveal the importance of the correct choice of protonation state for the accuracy of the result. We also provide insight into how different mutations affect drug binding in their specific ways, with the unifying theme of how all of them affect the crucial drug binding regions of the protease.
引用
收藏
页码:3397 / 3408
页数:12
相关论文
共 87 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined by high-resolution X-ray and neutron crystallography [J].
Adachi, Motoyasu ;
Ohhara, Takashi ;
Kurihara, Kazuo ;
Tamada, Taro ;
Honjo, Eijiro ;
Okazaki, Nobuo ;
Arai, Shigeki ;
Shoyama, Yoshinari ;
Kimura, Kaname ;
Matsumura, Hiroyoshi ;
Sugiyama, Shigeru ;
Adachi, Hiroaki ;
Takano, Kazufumi ;
Mori, Yusuke ;
Hidaka, Koushi ;
Kimura, Tooru ;
Hayashi, Yoshio ;
Kiso, Yoshiaki ;
Kuroki, Ryota .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (12) :4641-4646
[3]   Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative analysis of cohort studies [J].
Trickey, Adam ;
May, Margaret T. ;
Vehreschild, Jorg-Janne ;
Obel, Niels ;
Gill, M. John ;
Crane, Heidi M. ;
Boesecke, Christoph ;
Patterson, Sophie ;
Grabar, Sophie ;
Cazanave, Charles ;
Cavassini, Matthias ;
Shepherd, Leah ;
Monforte, Antonella d'Arminio ;
van Sighem, Ard ;
Saag, Michael ;
Lampe, Fiona ;
Hernando, Vicky ;
Montero, Marta ;
Zangerle, Robert ;
Justice, Amy C. ;
Sterling, Timothy ;
Miro, Jose M. ;
Ingle, Suzanne M. ;
Sterne, Jonathan A. C. ;
Boulle, Andrew ;
Stephan, Christoph ;
Miro, Jose M. ;
Cavassini, Matthias ;
Chene, Genevieve ;
Costagliola, Dominique ;
Dabis, Francois ;
del Amo, Julia ;
Van Sighem, Ard ;
Vehreschild, Jorg-Janne ;
Gill, M. John ;
Guest, Jodie ;
Haerry, David Hans-Ulrich ;
Hogg, Robert ;
Justice, Amy C. ;
Shepherd, Leah ;
Obel, Niels ;
Crane, Heidi M. ;
Smith, Colette ;
Reiss, Peter ;
Saag, Michael ;
Sterling, Timothy ;
Teira, Ramon ;
Williams, Matthew ;
Zangerle, Robert ;
Sterne, Jonathan A. C. .
LANCET HIV, 2017, 4 (08) :E349-E356
[4]   STRUCTURE OF HIV-1 PROTEASE WITH KNI-272, A TIGHT-BINDING TRANSITION-STATE ANALOG CONTAINING ALLOPHENYLNORSTATINE [J].
BALDWIN, ET ;
BHAT, TN ;
GULNIK, S ;
LIU, BS ;
TOPOL, IA ;
KISO, Y ;
MIMOTO, T ;
MITSUYA, H ;
ERICKSON, JW .
STRUCTURE, 1995, 3 (06) :581-590
[5]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[6]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[7]  
Bethell R, 2012, AIDS RES HUM RETROV, V28, P819, DOI [10.1089/aid.2011.0242, 10.1089/AID.2011.0242]
[8]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[9]  
Chemaxon, 2010, CALC VERS 5 3 8
[10]   Insights into drug resistance of mutations D30N and I50V to HIV-1 protease inhibitor TMC-114: Free energy calculation and molecular dynamic simulation [J].
Chen, Jianzhong ;
Zhang, Shaolong ;
Liu, Xinguo ;
Zhang, Qinggang .
JOURNAL OF MOLECULAR MODELING, 2010, 16 (03) :459-468