Macrophage phenotypes in atherosclerosis

被引:553
作者
Colin, Sophie [1 ,2 ,3 ,4 ]
Chinetti-Gbaguidi, Giulia [1 ,2 ,3 ,4 ]
Staels, Bart [1 ,2 ,3 ,4 ]
机构
[1] Univ Lille 2, Lille, France
[2] INSERM, U1011, F-59045 Lille, France
[3] Inst Pasteur, Lille, France
[4] EGID, FR 3508, Lille, France
关键词
macrophages; lipids; atherosclerosis; polarization; cytokines; chemokines; inflammation; FOAM CELL-FORMATION; FACTOR-KAPPA-B; ADIPOSE-TISSUE INFLAMMATION; LOW-DENSITY-LIPOPROTEIN; MONOCYTE-DERIVED MACROPHAGES; ACUTE MYOCARDIAL-INFARCTION; COLONY-STIMULATING FACTOR; ACTIVATED-RECEPTOR-GAMMA; PRIMES HUMAN MONOCYTES; PPAR-GAMMA;
D O I
10.1111/imr.12218
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Initiation and progression of atherosclerosis depend on local inflammation and accumulation of lipids in the vascular wall. Although many cells are involved in the development and progression of atherosclerosis, macrophages are fundamental contributors. For nearly a decade, the phenotypic heterogeneity and plasticity of macrophages has been studied. In atherosclerotic lesions, macrophages are submitted to a large variety of micro-environmental signals, such as oxidized lipids and cytokines, which influence the phenotypic polarization and activation of macrophages resulting in a dynamic plasticity. The macrophage phenotype spectrum is characterized, at the extremes, by the classical M1 macrophages induced by T-helper 1 (Th-1) cytokines and by the alternative M2 macrophages induced by Th-2 cytokines. M2 macrophages can be further classified into M2a, M2b, M2c, and M2d subtypes. More recently, additional plaque-specific macrophage phenotypes have been identified, termed as Mox, Mhem, and M4. Understanding the mechanisms and functional consequences of the phenotypic heterogeneity of macrophages will contribute to determine their potential role in lesion development and plaque stability. Furthermore, research on macrophage plasticity could lead to novel therapeutic approaches to counteract cardiovascular diseases such as atherosclerosis. The present review summarizes our current knowledge on macrophage subsets in atherosclerotic plaques and mechanism behind the modulation of the macrophage phenotype.
引用
收藏
页码:153 / 166
页数:14
相关论文
共 164 条
[1]   Signal transducer and activator of transcription 1 is required for optimal foam cell formation and atherosclerotic lesion development [J].
Agrawal, Sudesh ;
Febbraio, Maria ;
Podrez, Eugene ;
Cathcart, Martha K. ;
Stark, George R. ;
Chisolm, Guy M. .
CIRCULATION, 2007, 115 (23) :2939-2947
[2]   Disruption of Mammalian Target of Rapamycin Complex 1 in Macrophages Decreases Chemokine Gene Expression and Atherosclerosis [J].
Ai, Ding ;
Jiang, Hongfeng ;
Westerterp, Marit ;
Murphy, Andrew J. ;
Wang, Mi ;
Ganda, Anjali ;
Abramowicz, Sandra ;
Welch, Carrie ;
Almazan, Felicidad ;
Zhu, Yi ;
Miller, Yury I. ;
Tall, Alan R. .
CIRCULATION RESEARCH, 2014, 114 (10) :1576-1584
[3]   Conditional knockout of macrophage PPARγ increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice [J].
Babaev, VR ;
Yancey, PG ;
Ryzhov, SV ;
Kon, V ;
Breyer, MD ;
Magnuson, MA ;
Fazio, S ;
Linton, MF .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2005, 25 (08) :1647-1653
[4]   Macrophages Generate Reactive Oxygen Species in Response to Minimally Oxidized Low-Density Lipoprotein Toll-Like Receptor 4-and Spleen Tyrosine Kinase-Dependent Activation of NADPH Oxidase 2 [J].
Bae, Yun Soo ;
Lee, Jee Hyun ;
Choi, Soo Ho ;
Kim, Sunah ;
Almazan, Felicidad ;
Witztum, Joseph L. ;
Miller, Yury I. .
CIRCULATION RESEARCH, 2009, 104 (02) :210-U147
[5]   Apolipoprotein E Induces Antiinflammatory Phenotype in Macrophages [J].
Baitsch, Daniel ;
Bock, Hans H. ;
Engel, Thomas ;
Telgmann, Ralph ;
Mueller-Tidow, Carsten ;
Varga, Georg ;
Bot, Martine ;
Herz, Joachim ;
Robenek, Horst ;
von Eckardstein, Arnold ;
Nofer, Jerzy-Roch .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2011, 31 (05) :1160-U577
[6]   miR-125a-5p Regulates Differential Activation of Macrophages and Inflammation [J].
Banerjee, Sami ;
Cui, Huachun ;
Xie, Na ;
Tan, Zheng ;
Yang, Shanzhong ;
Icyuz, Mert ;
Thannickal, Victor John ;
Abraham, Edward ;
Liu, Gang .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (49) :35428-35436
[7]   Optical coherence tomography assessment of vulnerable plaque rupture: predilection for the plaque 'shoulder' [J].
Barlis, Peter ;
Serruys, Patrick W. ;
DeVries, Arie ;
Regar, Evelyn .
EUROPEAN HEART JOURNAL, 2008, 29 (16) :2023-2023
[8]  
Bellingan GJ, 1996, J IMMUNOL, V157, P2577
[9]   Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease [J].
Besler, Christian ;
Heinrich, Kathrin ;
Rohrer, Lucia ;
Doerries, Carola ;
Riwanto, Meliana ;
Shih, Diana M. ;
Chroni, Angeliki ;
Yonekawa, Keiko ;
Stein, Sokrates ;
Schaefer, Nicola ;
Mueller, Maja ;
Akhmedov, Alexander ;
Daniil, Georgios ;
Manes, Costantina ;
Templin, Christian ;
Wyss, Christophe ;
Maier, Willibald ;
Tanner, Felix C. ;
Matter, Christian M. ;
Corti, Roberto ;
Furlong, Clement ;
Lusis, Aldons J. ;
von Eckardstein, Arnold ;
Fogelman, Alan M. ;
Luescher, Thomas F. ;
Landmesser, Ulf .
JOURNAL OF CLINICAL INVESTIGATION, 2011, 121 (07) :2693-2708
[10]   Intracellular localization of oxidized low-density lipoproteins in atherosclerotic plaque cells revealed by electron microscopy combined with laser capture microdissection [J].
Bobryshev, YV .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2005, 53 (06) :793-797