The effect of image compression on classification and storage requirements in a high-throughput crystallization system

被引:0
作者
Berry, I
Wilson, J
Mayo, C
Diprose, J
Esnouf, R
机构
[1] Univ Oxford, Div Struct Biol, Oxford OX3 7BN, England
[2] Univ York, Dept Chem, York Struct Biol Lab, York YO10 5DD, N Yorkshire, England
来源
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2004, PROCEEDINGS | 2004年 / 3177卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High-throughput crystallization and imaging facilities can require a huge amount of disk space to keep images on-line. Although compressed images can look very similar to the human eye, the effect on the performance of crystal detection software needs to be analysed. This paper tests the use of common lossy and lossless compression algorithms on image file size and on the performance of the York University image analysis software by comparison of compressed Oxford images with their native, uncompressed bitmap images. This study shows that significant (approximately 4-fold) space savings can be gained with only a moderate effect on classification capability.
引用
收藏
页码:117 / 124
页数:8
相关论文
共 7 条
[1]   Automatic classification of protein crystallization images using a curve-tracking algorithm [J].
Bern, M ;
Goldberg, D ;
Stevens, RC ;
Kuhn, P .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2004, 37 :279-287
[2]   A procedure for setting up high-throughput nanolitre crystallization experiments. II. Crystallization results [J].
Brown, J ;
Walter, TS ;
Carter, L ;
Abrescia, NGA ;
Aricescu, AR ;
Batuwangala, TD ;
Bird, LE ;
Brown, N ;
Chamberlain, PP ;
Davis, SJ ;
Dubinina, E ;
Endicott, J ;
Fennelly, JA ;
Gilbert, RJC ;
Harkiolaki, M ;
Hon, WC ;
Kimberley, F ;
Love, CA ;
Mancini, EJ ;
Manso-Sancho, R ;
Nichols, CE ;
Robinson, RA ;
Sutton, GC ;
Schueller, N ;
Sleeman, MC ;
Stewart-Jones, GB ;
Vuong, M ;
Welburn, J ;
Zhang, Z ;
Stammers, DK ;
Owens, RJ ;
Jones, EY ;
Harlos, K ;
Stuart, DI .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2003, 36 :315-318
[3]   Automatic classification of sub-microlitre protein-crystallization trials in 1536-well plates [J].
Cumbaa, CA ;
Lauricella, A ;
Fehrman, N ;
Veatch, C ;
Collins, R ;
Luft, J ;
DeTitta, G ;
Jurisica, I .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2003, 59 :1619-1627
[4]   Computational analysis of crystallization trials [J].
Spraggon, G ;
Lesley, SA ;
Kreusch, A ;
Priestle, JP .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2002, 58 :1915-1923
[5]   A procedure for setting up high-throughput nanolitre crystallization experiments. I. Protocol design and validation [J].
Walter, TS ;
Diprose, J ;
Brown, J ;
Pickford, M ;
Owens, RJ ;
Stuart, DI ;
Harlos, K .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2003, 36 :308-314
[6]   Towards the automated evaluation of crystallization trials [J].
Wilson, J .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2002, 58 :1907-1914
[7]  
WILSON J, 2004, CRYSTALLOGR REV, V10, P73