A Standardized [18F]-FDG-PET Template for Spatial Normalization in Statistical Parametric Mapping of Dementia

被引:260
作者
Della Rosa, Pasquale Anthony [1 ]
Cerami, Chiara [2 ,3 ]
Gallivanone, Francesca [1 ]
Prestia, Annapaola [4 ]
Caroli, Anna [5 ]
Castiglioni, Isabella [1 ]
Gilardi, Maria Carla [1 ,6 ]
Frisoni, Giovanni [4 ,7 ,8 ]
Friston, Karl [9 ]
Ashburner, John [10 ]
Perani, Daniela [2 ,11 ]
机构
[1] CNR, Inst Mol Bioimaging & Physiol, Segrate, MI, Italy
[2] Univ Vita Salute San Raffaele, Milan, Italy
[3] Hosp San Raffaele, San Raffaele Sci Inst, Div Neurosci, Dept Clin Neurosci, I-20132 Milan, Italy
[4] IRCCS Ctr San Giovanni Dio Fatebenefratelli, Lab Epidemiol & Neuroimaging, Brescia, Italy
[5] IRCCS Mario Negri Inst Pharmacol Res, Dept Bioengn, Med Imaging Unit, Bergamo, Italy
[6] Univ Milano Bicocca, Dept Hlth Sci, Milan, Italy
[7] Univ Hosp Geneva, Dept Psychiat, Geneva, Switzerland
[8] Univ Geneva, Geneva, Switzerland
[9] UCL, Inst Neurol, Wellcome Trust Ctr Neuroimaging, London, England
[10] Wellcome Trust Ctr Neuroimaging, London, England
[11] Hosp San Raffaele, San Raffaele Sci Inst, Div Neurosci, Nucl Med Unit, I-20132 Milan, Italy
基金
英国惠康基金; 欧盟第七框架计划;
关键词
F-18-FDG PET; SPM (RRID:nif-0000-00343); Spatial normalization; Template; Dementia; MILD COGNITIVE IMPAIRMENT; ALZHEIMERS ASSOCIATION WORKGROUPS; FDG-PET SCANS; FRONTOTEMPORAL DEMENTIA; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; METABOLIC IMPAIRMENT; ATROPHIED BRAINS; LEWY BODIES; DISEASE;
D O I
10.1007/s12021-014-9235-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
[F-18]-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) is a widely used diagnostic tool that can detect and quantify pathophysiology, as assessed through changes in cerebral glucose metabolism. [F-18]-FDG PET scans can be analyzed using voxel-based statistical methods such as Statistical Parametric Mapping (SPM) that provide statistical maps of brain abnormalities in single patients. In order to perform SPM, a "spatial normalization" of an individual's PET scan is required to match a reference PET template. The PET template currently used for SPM normalization is based on [O-15]-H2O images and does not resemble either the specific metabolic features of [F-18]-FDG brain scans or the specific morphological characteristics of individual brains affected by neurodegeneration. Thus, our aim was to create a new [F-18]-FDG PET aging and dementia-specific template for spatial normalization, based on images derived from both age-matched controls and patients. We hypothesized that this template would increase spatial normalization accuracy and thereby preserve crucial information for research and diagnostic purposes. We investigated the statistical sensitivity and registration accuracy of normalization procedures based on the standard and new template-at the single-subject and group level-independently for subjects with Mild Cognitive Impairment (MCI), probable Alzheimer's Disease (AD), Frontotemporal lobar degeneration (FTLD) and dementia with Lewy bodies (DLB). We found a significant statistical effect of the population-specific FDG template-based normalisation in key anatomical regions for each dementia subtype, suggesting that spatial normalization with the new template provides more accurate estimates of metabolic abnormalities for single-subject and group analysis, and therefore, a more effective diagnostic measure.
引用
收藏
页码:575 / 593
页数:19
相关论文
共 55 条
  • [1] The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
    Albert, Marilyn S.
    DeKosky, Steven T.
    Dickson, Dennis
    Dubois, Bruno
    Feldman, Howard H.
    Fox, Nick C.
    Gamst, Anthony
    Holtzman, David M.
    Jagust, William J.
    Petersen, Ronald C.
    Snyder, Peter J.
    Carrillo, Maria C.
    Thies, Bill
    Phelps, Creighton H.
    [J]. ALZHEIMERS & DEMENTIA, 2011, 7 (03) : 270 - 279
  • [2] Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease
    Anchisi, D
    Borroni, B
    Franceschi, M
    Kerrouche, N
    Kalbe, E
    Beuthien-Beumann, B
    Cappa, S
    Lenz, O
    Ludecke, S
    Marcone, A
    Mielke, R
    Ortelli, P
    Padovani, A
    Pelati, O
    Pupi, A
    Scarpini, E
    Weisenbach, S
    Herholz, K
    Salmon, E
    Holthoff, V
    Sorbi, S
    Fazio, F
    Perani, D
    [J]. ARCHIVES OF NEUROLOGY, 2005, 62 (11) : 1728 - 1733
  • [3] [Anonymous], 2011, ALZHEIMERS DIS INT W
  • [4] Ashburner J, 1999, HUM BRAIN MAPP, V7, P254, DOI 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO
  • [5] 2-G
  • [6] A fast diffeomorphic image registration algorithm
    Ashburner, John
    [J]. NEUROIMAGE, 2007, 38 (01) : 95 - 113
  • [7] Bartenstein P, 2002, EUR J NUCL MED MOL I, V29, pBP43
  • [8] Early Detection of Alzheimer's Disease with PET Imaging
    Berti, V.
    Osorio, R. S.
    Mosconi, L.
    Li, Y.
    De Santi, S.
    de Leon, M. J.
    [J]. NEURODEGENERATIVE DISEASES, 2010, 7 (1-3) : 131 - 135
  • [9] Epidemiology of non-AD dementias
    Bornebroek, M
    Breteler, MMB
    [J]. CLINICAL NEUROSCIENCE RESEARCH, 2004, 3 (06) : 349 - 361
  • [10] Adjusted scaling of FDG positron emission tomography images for statistical evaluation in patients with suspected Alzheimer's disease
    Buchert, R
    Wilke, F
    Chakrabarti, B
    Martin, B
    Brenner, W
    Mester, J
    Clausen, M
    [J]. JOURNAL OF NEUROIMAGING, 2005, 15 (04) : 348 - 355