Backward Blow-up Estimates and Initial Trace for a Parabolic System of Reaction-Diffusion

被引:0
作者
Bidaut-Veron, Marie-Francoise [1 ]
Garcia-Huidobro, Marta [2 ]
Yarur, Cecilia [3 ]
机构
[1] CNRS, Lab Math & Phys Theor, UMR 6083, Fac Sci, F-37200 Tours, France
[2] Pontificia Univ Catolica Chile, Dept Matemat, Santiago, Chile
[3] Univ Santiago Chile, Dept Matemat & Ciencia Computac, Santiago, Chile
关键词
Parabolic semilinear systems of reaction-diffusion; competitive systems; backward estimates; initial trace; singularities; POSITIVE SOLUTIONS; ELLIPTIC-SYSTEMS; EQUATIONS; ABSORPTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the positive solutions of the parabolic semilinear system of competitive type {u(t) - Delta u + v(p) = 0, u(t) - Delta v + u(q) = 0, in Omega x (0, T), where Omega is a domain of R(N), and p, q > 0, pq not equal 1. Despite of the lack of comparison principles, we prove local upper estimates in the superlinear case pq > 1 of the form u(x, t) <= Ct(-(p+1)/(pq-1)), v(x, t) <= Ct(-(q+1)/(pq-1)) in omega x (0, T(1)), for any domain omega subset of subset of Omega, T(1) is an element of (0, T), and C = C(N,p,q,T1,omega). For p, q > 1, we prove the existence of an initial trace at time 0, which is a Borel measure on Omega. Finally we prove that the punctual singularities at time 0 are removable when p,q >= 1+2/N.
引用
收藏
页码:707 / 728
页数:22
相关论文
共 18 条
[1]   SOME UNSOLVED PROBLEMS IN THE THEORY OF DIFFERENTIAL-EQUATIONS AND MATHEMATICAL PHYSICS [J].
ARNOLD, VI ;
VISHIK, MI ;
ILYASHENKO, YS ;
KALASHNIKOV, AS ;
KONDRATEV, VA ;
KRUZHKOV, SN ;
LANDIS, EM ;
MILLIONSHCHIKOV, VM ;
OLEINIK, OA ;
FILIPPOV, AF ;
SHUBIN, MA .
RUSSIAN MATHEMATICAL SURVEYS, 1989, 44 (04) :157-171
[2]   Nonexistence results and estimates for some nonlinear elliptic problems [J].
Bidaut-Véron, MF ;
Pohozaev, S .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1) :1-49
[3]   Initial trace of solutions of some quasilinear parabolic equations with absorption [J].
Bidaut-Véron, MF ;
Chasseigne, E ;
Véron, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 193 (01) :140-205
[4]  
BIDAUTVERON M, 2003, ASYMPTOTIC ANAL, V241, P283
[5]  
BIDAUTVERON MF, 1999, ANN SC NORM SUP PISA, P229
[6]  
BREZIS H, 1983, J MATH PURE APPL, V62, P73
[7]  
BREZIS H, 1986, ARCH RATION MECH AN, V95, P185, DOI 10.1007/BF00251357
[8]  
DiBenedetto E., 1995, Partial differential equation
[9]   TRAVELING-WAVE SOLUTIONS TO A SEMILINEAR DIFFUSION SYSTEM [J].
ESQUINAS, J ;
HERRERO, MA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (01) :123-136
[10]   The solvability of an elliptic system under a singular boundary condition [J].
Garcia-Melian, J. ;
de Lis, J. Sabina ;
Letelier-Albornoz, R. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :509-546