Interpretable and unsupervised phase classification

被引:25
作者
Arnold, Julian [1 ]
Schaefer, Frank [1 ]
Zonda, Martin [2 ,3 ]
Lode, Axel U. J. [2 ]
机构
[1] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[2] Albert Ludwigs Univ Freiburg, Inst Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany
[3] Charles Univ Prague, Fac Math & Phys, Dept Condensed Matter Phys, KE Karlovu 5, CZ-12116 Prague 2, Czech Republic
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
基金
奥地利科学基金会;
关键词
FALICOV-KIMBALL MODEL; MEAN-FIELD THEORY; ELECTRON CORRELATIONS; METAL TRANSITIONS; NETWORKS;
D O I
10.1103/PhysRevResearch.3.033052
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fully automated classification methods that provide direct physical insights into phase diagrams are of current interest. Interpretable, i.e., fully explainable, methods are desired for which we understand why they yield a given phase classification. Ideally, phase classification methods should also be unsupervised. That is, they should not require prior labeling or knowledge of the phases of matter to be characterized. Here, we demonstrate an unsupervised machine-learning method for phase classification, which is rendered interpretable via an analytical derivation of the functional relationship between its optimal predictions and the input data. Based on these findings, we propose and apply an alternative, physically-motivated, data-driven scheme, which relies on the difference between mean input features. This mean-based method does not rely on any predictive model and is thus computationally cheap and directly explainable. As an example, we consider the physically rich ground-state phase diagram of the spinless Falicov-Kimball model.
引用
收藏
页数:16
相关论文
共 100 条
[61]   Anderson localization on Falicov-Kimball model with next-nearest-neighbor hopping and long-range correlated disorder [J].
Maionchi, D. O. ;
Souza, A. M. C. ;
Herrmann, H. J. ;
da Costa Filho, R. N. .
PHYSICAL REVIEW B, 2008, 77 (24)
[62]   Exchange bias due to coupling between coexisting antiferromagnetic and spin-glass orders [J].
Maniv, Eran ;
Murphy, Ryan A. ;
Haley, Shannon C. ;
Doyle, Spencer ;
John, Caolan ;
Maniv, Ariel ;
Ramakrishna, Sanath K. ;
Tang, Yun-Long ;
Ercius, Peter ;
Ramesh, Ramamoorthy ;
Reyes, Arneil P. ;
Long, Jeffrey R. ;
Analytis, James G. .
NATURE PHYSICS, 2021, 17 (04) :525-+
[63]   Momentum distribution and ordering in mixtures of ultracold light- and heavy-fermion atoms [J].
Maska, M. M. ;
Lemanski, R. ;
Williams, C. J. ;
Freericks, J. K. .
PHYSICAL REVIEW A, 2011, 83 (06)
[64]   Pattern formation in mixtures of ultracold atoms in optical lattices [J].
Maska, M. M. ;
Lemanski, R. ;
Freericks, J. K. ;
Williams, C. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (06)
[65]   Thermodynamics of the two-dimensional Falicov-Kimball model: A classical Monte Carlo study [J].
Maska, Maciej M. ;
Czajka, Katarzyna .
PHYSICAL REVIEW B, 2006, 74 (03)
[66]  
McInnes L., 2018, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction-umap 0.5 documentation
[67]   A high-bias, low-variance introduction to Machine Learning for physicists [J].
Mehta, Pankaj ;
Bukov, Marin ;
Wang, Ching-Hao ;
Day, Alexandre G. R. ;
Richardson, Clint ;
Fisher, Charles K. ;
Schwab, David J. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2019, 810 :1-124
[68]  
Molnar Christoph, 2020, COMM COM INF SC, DOI DOI 10.1007/978-3-030-65965-3_28
[69]   Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions [J].
Ohtsuki, Tomi ;
Ohtsuki, Tomoki .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (04)
[70]   Classical and Quantum Liquids Induced by Quantum Fluctuations [J].
Oliveira, Miguel M. ;
Ribeiro, Pedro ;
Kirchner, Stefan .
PHYSICAL REVIEW LETTERS, 2019, 122 (19)