Hp spaces for generalized Schrodinger operators and applications

被引:0
作者
Liu, Yu [1 ]
Wang, He [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger operators; Hardy space; Riesz transform; DECOMPOSITION;
D O I
10.1515/forum-2018-0290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Hardy type space H-L(p)(R-n) by means of local maximal functions associated with the heat semigroup e(-tL) generated by -L , where = -Delta +mu pis the generalized Schrodinger operator in R-n(n >= 3) and mu not equivalent to 0 is a nonnegative Radon measure satisfying certain scale-invariant Kato conditions and doubling conditions. Via the equivalence of the norms between various local maximal functions, we show that the norms parallel to f parallel to(p)(n)( )(HLp)((R)())and parallel to f parallel to H(mp,q)((R)())(p)(n)are equivalent for n/n+delta' < p <= 1 <= q <= infinity (p not equal q) with some delta' > 0. As applications, we prove that Calderon-Zygrnund operators related to the auxiliary function m(x, mu) are bounded from H-L((R))(p)n into L-p (n)((R)()) for n/n+gamma(1) < p <= 1 with gamma(1)> 0. In particular, we show that the Riesz transform del(-Delta + mu)(-1/2), which is a special example of the above Calderon-Zygrnund operators, is bounded from H-L(p) (R-n) into H-p (R-n ) for n/n+gamma(1) < p <= 1 with 0 < gamma(1) < 1.
引用
收藏
页码:1379 / 1394
页数:16
相关论文
共 17 条
[1]  
Cao J, 2010, HOUSTON J MATH, V36, P1067
[2]   Boundedness of Singular Integrals on Hardy Type Spaces Associated with Schrodinger Operators [J].
Dong, Jianfeng ;
Huang, Jizheng ;
Liu, Heping .
JOURNAL OF FUNCTION SPACES, 2015, 2015
[3]   Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus [J].
Duong, Xuan Thinh ;
Li, Ji .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (06) :1409-1437
[4]  
Dziubanski J, 1998, INDIANA U MATH J, V47, P75
[5]  
Dziubanski J, 1997, STUD MATH, V126, P149
[6]  
Dziubanski J, 1999, REV MAT IBEROAM, V15, P279
[7]   REGULARITIES OF SEMIGROUPS, CARLESON MEASURES AND THE CHARACTERIZATIONS OF BMO-TYPE SPACES ASSOCIATED WITH GENERALIZED SCHRODINGER OPERATORS [J].
Hao, Yuanyuan ;
Li, Pengtao ;
Zhao, Kai .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (01) :1-25
[8]   Endpoint Estimates of Riesz Transforms Associated with Generalized Schrodinger Operators [J].
Liu, Yu ;
Qi, Shuai .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (04) :787-801
[9]   CARLESON MEASURES FOR THE GENERALIZED SCHRODINGER OPERATOR [J].
Qi, S. ;
Liu, Y. ;
Zhang, Y. .
ANNALS OF FUNCTIONAL ANALYSIS, 2018, 9 (04) :537-550
[10]   L(P) ESTIMATES FOR SCHRODINGER-OPERATORS WITH CERTAIN POTENTIALS [J].
SHEN, ZW .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (02) :513-546