Codes in Shilla Distance-Regular Graphs

被引:0
作者
Belousov, I. N. [1 ,2 ]
机构
[1] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ekaterinburg 620990, Russia
[2] Ural Fed Univ, Ekaterinburg 620002, Russia
基金
俄罗斯科学基金会;
关键词
distance-regular graph; graph automorphism;
D O I
10.1134/S0081543819040023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gamma be a distance-regular graph of diameter 3 containing a maximal 1-code C, which is locally regular and last subconstituent perfect. Then the graph Gamma has intersection array {a(p + 1), cp, a + 1; 1,c, ap} or {a(p + 1), (a + 1)p, c;1, c, ap}, where a = a(3), c = c(2), and p = p333 (Jurisic, Vidali). In the first case, Gamma has eigenvalue theta(2) = -1 and the graph Gamma(3) is pseudogeometric for GQ(p + 1, a). In the second case, Gamma is a Shilla graph. We study Shilla graphs in which every two vertices at distance 2 belong to a maximal 1-code. It is proved that, in the case theta(2) = -1, a graph with the specified property is either the Hamming graph H(3, 3) or a Johnson graph. We find necessary conditions for the existence of Q-polynomial Shilla graphs in which any two vertices at distance 3 lie in a maximal 1-code. In particular, we find two infinite families of feasible intersection arrays of Q-polynomial graphs with the specified property: {b(b(2) - 3b)/2, (b - 2)(b - 1)(2)/2, (b - 2)t/2; 1, bt/2, (b(2) - 3b)(b - 1)/2} (graphs with p333 = 0) and {b(2)(b - 4)/2, (b(2) - 4b + 2)(b - 1)/2, (b - 2)l/2; 1, bl/2, (b(2) - 4b)(b - 1)/2} (graphs with p333 = 1).
引用
收藏
页码:S4 / S9
页数:6
相关论文
共 7 条
  • [1] [Anonymous], 1989, DISTANCE REGULAR GRA
  • [2] Extremal 1-codes in distance-regular graphs of diameter 3
    Jurisic, Aleksandar
    Vidali, Janos
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2012, 65 (1-2) : 29 - 47
  • [3] An inequality involving the second largest and smallest eigenvalue of a distance-regular graph
    Koolen, Jack H.
    Park, Jongyook
    Yu, Hyonju
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (12) : 2404 - 2412
  • [4] Shilla distance-regular graphs
    Koolen, Jack H.
    Park, Jongyook
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (08) : 2064 - 2073
  • [5] Makhnev AA, 2017, SIB ELECTRON MATH RE, V14, P1135, DOI 10.17377/semi.2017.14.097
  • [6] Distance-Regular Shilla Graphs with b 2 = c 2
    Makhnev, A. A.
    Nirova, M. S.
    [J]. MATHEMATICAL NOTES, 2018, 103 (5-6) : 780 - 792
  • [7] Vidali J, 2013, THESIS U LJUBLJANA L