Production of GDP-L-fucose, L-fucose donor for fucosyloligosaccharide synthesis, in recombinant Escherichia coli

被引:35
作者
Byun, Seong-Goo
Kim, Myoung-Dong
Lee, Won-Heong
Lee, Kun-Jae
Han, Nam Soo
Seo, Jin-Ho [1 ]
机构
[1] Seoul Natl Univ, Dept Agr Biotechnol, Seoul 151921, South Korea
[2] Seoul Natl Univ, Ctr Agr Biomat, Seoul 151921, South Korea
[3] Kangwon Natl Univ, Sch Biosci & Biotechnol, Chunchon 200701, South Korea
[4] Chungbuk Natl Univ, Dept Food Sci & Technol, Cheongju 361763, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1007/s00253-006-0730-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A recombinant Escherichia coli strain was developed to produce guanosine 5'-diphosphate (GDP)-L-fucose, donor of L-fucose, which is an essential substrate for the synthesis of fucosyloligosaccharides. GDP-D-mannose-4, 6-dehydratase (GMD) and GDP-4-keto-6-deoxymannose 3, 5-epimerase 4-reductase (WcaG), the two crucial enzymes for the de novo GDP-L-fucose biosynthesis, were overexpressed in recombinant E. coli by constructing inducible overexpression vectors. Optimum expression conditions for GMD and WcaG in recombinant E. coli BL21(DE3) were 25 degrees C and 0.1 mM isopropyl-beta-D-thioglucopyranoside. Maximum GDP-L-fucose concentration of 38.9 +/- 0.6 mg l(-1) was obtained in a glucose-limited fed-batch cultivation, and it was enhanced further by co-expression of NADPH-regenerating glucose-6-phosphate dehydrogenase encoded by the zwf gene to achieve 55.2 +/- 0.5 mg l(-1) GDP-L-fucose under the same cultivation condition.
引用
收藏
页码:768 / 775
页数:8
相关论文
共 28 条
[1]   Synthesis of the milk oligosaccharide 2′-fucosyllactose using recombinant bacterial enzymes [J].
Albermann, C ;
Piepersberg, W ;
Wehmeier, UF .
CARBOHYDRATE RESEARCH, 2001, 334 (02) :97-103
[2]   Preparative synthesis of GDP-β-L-fucose by recombinant enzymes from enterobacterial sources [J].
Albermann, C ;
Distler, J ;
Piepersberg, W .
GLYCOBIOLOGY, 2000, 10 (09) :875-881
[3]   Fucose: biosynthesis and biological function in mammals [J].
Becker, DJ ;
Lowe, JB .
GLYCOBIOLOGY, 2003, 13 (07) :41R-53R
[4]   Metabolic engineering of Escherichia coli:: Increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase [J].
Berríos-Rivera, SJ ;
Bennett, GN ;
San, KY .
METABOLIC ENGINEERING, 2002, 4 (03) :217-229
[5]   Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone [J].
Boonstra, B ;
Rathbone, DA ;
French, CE ;
Walker, EH ;
Bruce, NC .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (12) :5161-5166
[6]   Enzymatic synthesis of nucleotide sugars [J].
Bülter, T ;
Elling, L .
GLYCOCONJUGATE JOURNAL, 1999, 16 (02) :147-159
[7]  
COFFEY JW, 1964, J BIOL CHEM, V239, P4011
[8]   OLIGOSACCHARIDES FROM HUMAN-MILK BLOCK BINDING AND ACTIVITY OF THE ESCHERICHIA-COLI HEAT-STABLE ENTEROTOXIN (STA) IN T84 INTESTINAL-CELLS [J].
CRANE, JK ;
AZAR, SS ;
STAM, A ;
NEWBURG, DS .
JOURNAL OF NUTRITION, 1994, 124 (12) :2358-2364
[9]   Metabolic oligosaccharide engineering as a tool for glycobiology [J].
Dube, DH ;
Bertozzi, CR .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (05) :616-625
[10]   Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling [J].
Endo, T ;
Koizumi, S ;
Tabata, K ;
Ozaki, A .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2000, 53 (03) :257-261