RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data

被引:279
作者
Zhan, Xiaowei [1 ,2 ]
Hu, Youna [3 ]
Li, Bingshan [4 ]
Abecasis, Goncalo R. [5 ]
Liu, Dajiang J. [6 ,7 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Quantitat Biomed Res Ctr, Dept Clin Sci, Dallas, TX 75390 USA
[2] Univ Texas SW Med Ctr Dallas, Ctr Genet Host Def, Dallas, TX 75390 USA
[3] A9 Com Inc, Palo Alto, CA 94301 USA
[4] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37240 USA
[5] Univ Michigan, Ctr Stat Genet, Dept Biostat, Ann Arbor, MI 48109 USA
[6] Penn State Coll Med, Dept Publ Hlth Sci, Div Biostat & Bioinformat, Hershey, PA 17033 USA
[7] Penn State Coll Med, Inst Personalized Med, Hershey, PA 17033 USA
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; METAANALYSIS; ANNOTATION; JOINT; TRAIT;
D O I
10.1093/bioinformatics/btw079
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Next-generation sequencing technologies have enabled the large-scale assessment of the impact of rare and low-frequency genetic variants for complex human diseases. Gene-level association tests are often performed to analyze rare variants, where multiple rare variants in a gene region are analyzed jointly. Applying gene-level association tests to analyze sequence data often requires integrating multiple heterogeneous sources of information (e.g. annotations, functional prediction scores, allele frequencies, genotypes and phenotypes) to determine the optimal analysis unit and prioritize causal variants. Given the complexity and scale of current sequence datasets and bioinformatics databases, there is a compelling need for more efficient software tools to facilitate these analyses. To answer this challenge, we developed RVTESTS, which implements a broad set of rare variant association statistics and supports the analysis of autosomal and X-linked variants for both unrelated and related individuals. RVTESTS also provides useful companion features for annotating sequence variants, integrating bioinformatics databases, performing data quality control and sample selection. We illustrate the advantages of RVTESTS in functionality and efficiency using the 1000 Genomes Project data.
引用
收藏
页码:1423 / 1426
页数:4
相关论文
共 18 条
[1]   The Value of Statistical or Bioinformatics Annotation for Rare Variant Association With Quantitative Trait [J].
Byrnes, Andrea E. ;
Wu, Michael C. ;
Wright, Fred A. ;
Li, Mingyao ;
Li, Yun .
GENETIC EPIDEMIOLOGY, 2013, 37 (07) :666-674
[2]   A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 [J].
Cingolani, Pablo ;
Platts, Adrian ;
Wang, Le Lily ;
Coon, Melissa ;
Tung Nguyen ;
Wang, Luan ;
Land, Susan J. ;
Lu, Xiangyi ;
Ruden, Douglas M. .
FLY, 2012, 6 (02) :80-92
[3]   RAREMETAL: fast and powerful meta-analysis for rare variants [J].
Feng, Shuang ;
Liu, Dajiang ;
Zhan, Xiaowei ;
Wing, Mary Kate ;
Abecasis, Goncalo R. .
BIOINFORMATICS, 2014, 30 (19) :2828-2829
[4]   BIAS REDUCTION OF MAXIMUM-LIKELIHOOD-ESTIMATES [J].
FIRTH, D .
BIOMETRIKA, 1993, 80 (01) :27-38
[5]   A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data [J].
Hu, Hao ;
Roach, Jared C. ;
Coon, Hilary ;
Guthery, Stephen L. ;
Voelkerding, Karl V. ;
Margraf, Rebecca L. ;
Durtschi, Jacob D. ;
Tavtigian, Sean V. ;
Shankaracharya ;
Wu, Wilfred ;
Scheet, Paul ;
Wang, Shuoguo ;
Xing, Jinchuan ;
Glusman, Gustavo ;
Hubley, Robert ;
Li, Hong ;
Garg, Vidu ;
Moore, Barry ;
Hood, Leroy ;
Galas, David J. ;
Srivastava, Deepak ;
Reese, Martin G. ;
Jorde, Lynn B. ;
Yandell, Mark ;
Huff, Chad D. .
NATURE BIOTECHNOLOGY, 2014, 32 (07) :663-+
[6]   Power of deep, all-exon resequencing for discovery of human trait genes [J].
Kryukov, Gregory V. ;
Shpunt, Alexander ;
Stamatoyannopoulos, John A. ;
Sunyaev, Shamil R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (10) :3871-3876
[7]   Rare-Variant Association Analysis: Study Designs and Statistical Tests [J].
Lee, Seunggeung ;
Abecasis, Goncalo R. ;
Boehnke, Michael ;
Lin, Xihong .
AMERICAN JOURNAL OF HUMAN GENETICS, 2014, 95 (01) :5-23
[8]   Methods for detecting associations with rare variants for common diseases: Application to analysis of sequence data [J].
Li, Bingshan ;
Leal, Suzanne M. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 83 (03) :311-321
[9]  
Lippert C, 2011, NAT METHODS, V8, P833, DOI [10.1038/nmeth.1681, 10.1038/NMETH.1681]
[10]   FaST-LMM-Select for addressing confounding from spatial structure and rare variants [J].
Listgarten, Jennifer ;
Lippert, Christoph ;
Heckerman, David .
NATURE GENETICS, 2013, 45 (05) :470-471