F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress

被引:569
作者
Jain, Mukesh
Nijhawan, Aashima
Arora, Rita
Agarwal, Pinky
Ray, Swatismita
Sharma, Pooja
Kapoor, Sanjay
Tyagi, Akhilesh K.
Khurana, Jitendra P.
机构
[1] Univ Delhi, Interdisciplinary Ctr Plant Genom, New Delhi 110021, India
[2] Univ Delhi, Dept Plant Mol Biol, New Delhi 110021, India
关键词
D O I
10.1104/pp.106.091900
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
F-box proteins constitute a large family in eukaryotes and are characterized by a conserved F-box motif (approximately 40 amino acids). As components of the Skp1p-cullin-F-box complex, F-box proteins are critical for the controlled degradation of cellular proteins. We have identified 687 potential F-box proteins in rice (Oryza sativa), the model monocotyledonous plant, by a reiterative database search. Computational analysis revealed the presence of several other functional domains, including leucine-rich repeats, kelch repeats, F-box associated domain, domain of unknown function, and tubby domain in F-box proteins. Based upon their domain composition, they have been classified into 10 subfamilies. Several putative novel conserved motifs have been identified in F-box proteins, which do not contain any other known functional domain. An analysis of a complete set of F-box proteins in rice is presented, including classification, chromosomal location, conserved motifs, and phylogenetic relationship. It appears that the expansion of F-box family in rice, in large part, might have occurred due to localized gene duplications. Furthermore, comprehensive digital expression analysis of F-box protein-encoding genes has been complemented with microarray analysis. The results reveal specific and/or overlapping expression of rice F-box proteinen-coding genes during floral transition as well as panicle and seed development. At least 43 F-box protein-encoding genes have been found to be differentially expressed in rice seedlings subjected to different abiotic stress conditions. The expression of several F-box protein-encoding genes is also influenced by light. The structure and function of F-box proteins in plants is discussed in light of these results and the published information. These data will be useful for prioritization of F-box proteins for functional validation in rice.
引用
收藏
页码:1467 / 1483
页数:17
相关论文
共 93 条
  • [1] The kelch repeat superfamily of proteins: propellers of cell function
    Adams, J
    Kelso, R
    Cooley, L
    [J]. TRENDS IN CELL BIOLOGY, 2000, 10 (01) : 17 - 24
  • [2] Identification of nutrient partitioning genes participating in rice grain filling by singular value decomposition (SVD) of genome expression data
    Anderson, A
    Hudson, M
    Chen, WQ
    Zhu, T
    [J]. BMC GENOMICS, 2003, 4 (1)
  • [3] SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box
    Bai, C
    Sen, P
    Hofmann, K
    Ma, L
    Goebl, M
    Harper, JW
    Elledge, SJ
    [J]. CELL, 1996, 86 (02) : 263 - 274
  • [4] HUMAN CYCLIN-F
    BAI, C
    RICHMAN, R
    ELLEDGE, SJ
    [J]. EMBO JOURNAL, 1994, 13 (24) : 6087 - 6098
  • [5] Diversity in nucleotide binding site-leucine-rich repeat genes in cereals
    Bai, JF
    Pennill, LA
    Ning, JC
    Lee, SW
    Ramalingam, J
    Webb, CA
    Zhao, BY
    Sun, Q
    Nelson, JC
    Leach, JE
    Hulbert, SH
    [J]. GENOME RESEARCH, 2002, 12 (12) : 1871 - 1884
  • [6] Bailey T L, 1995, Proc Int Conf Intell Syst Mol Biol, V3, P21
  • [7] Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays
    Brenner, S
    Johnson, M
    Bridgham, J
    Golda, G
    Lloyd, DH
    Johnson, D
    Luo, SJ
    McCurdy, S
    Foy, M
    Ewan, M
    Roth, R
    George, D
    Eletr, S
    Albrecht, G
    Vermaas, E
    Williams, SR
    Moon, K
    Burcham, T
    Pallas, M
    DuBridge, RB
    Kirchner, J
    Fearon, K
    Mao, J
    Corcoran, K
    [J]. NATURE BIOTECHNOLOGY, 2000, 18 (06) : 630 - 634
  • [8] Identification of a family of human F-box proteins
    Cenciarelli, C
    Chiaur, DS
    Guardavaccaro, D
    Parks, W
    Vidal, M
    Pagano, M
    [J]. CURRENT BIOLOGY, 1999, 9 (20) : 1177 - 1179
  • [9] The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch
    Chamovitz, DA
    Wei, N
    Osterlund, MT
    vonArnim, AG
    Staub, JM
    Matsui, M
    Deng, XW
    [J]. CELL, 1996, 86 (01) : 115 - 121
  • [10] Light signal transduction in higher plants
    Chen, M
    Chory, J
    Fankhauser, C
    [J]. ANNUAL REVIEW OF GENETICS, 2004, 38 : 87 - 117