Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage

被引:8
作者
Kano, Shinya [1 ]
Fujii, Minoru [1 ]
机构
[1] Kobe Univ, Dept Elect & Elect Engn, Grad Sch Engn, Nada Ku, Kobe, Hyogo 6578501, Japan
关键词
energy harvesting; quantum dots; thermoelectricity; resonant tunneling; THERMOELECTRIC-MATERIALS; THERMAL-CONDUCTIVITY; NANOPARTICLES; SILICON; REFRIGERATOR; TRANSPORT; DEVICES;
D O I
10.1088/1361-6528/aa5939
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.
引用
收藏
页数:7
相关论文
共 39 条
  • [1] Ashcroft N W., 2003, Solid State Physics
  • [2] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [3] High-performance bulk thermoelectrics with all-scale hierarchical architectures
    Biswas, Kanishka
    He, Jiaqing
    Blum, Ivan D.
    Wu, Chun-I
    Hogan, Timothy P.
    Seidman, David N.
    Dravid, Vinayak P.
    Kanatzidis, Mercouri G.
    [J]. NATURE, 2012, 489 (7416) : 414 - 418
  • [4] Bochmann B M, 1993, J AM CHEM SOC, V115, P8706
  • [6] Thermal conductivity of carbon nanotubes
    Che, JW
    Çagin, T
    Goddard, WA
    [J]. NANOTECHNOLOGY, 2000, 11 (02) : 65 - 69
  • [7] Exploiting the colloidal nanocrystal library to construct electronic devices
    Choi, Ji-Hyuk
    Wang, Han
    Oh, Soong Ju
    Paik, Taejong
    Jo, Pil Sung
    Sung, Jinwoo
    Ye, Xingchen
    Zhao, Tianshuo
    Diroll, Benjamin T.
    Murray, Christopher B.
    Kagan, Cherie R.
    [J]. SCIENCE, 2016, 352 (6282) : 205 - 208
  • [8] Three-terminal heat engine and refrigerator based on superlattices
    Choi, Yunjin
    Jordan, Andrew N.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2015, 74 : 465 - 474
  • [9] IMPURITY BAND CONDUCTION IN GERMANIUM AND SILICON
    CONWELL, EM
    [J]. PHYSICAL REVIEW, 1956, 103 (01): : 51 - 60
  • [10] Ultra-low thermal conductivity in W/Al2O3 nanolaminates
    Costescu, RM
    Cahill, DG
    Fabreguette, FH
    Sechrist, ZA
    George, SM
    [J]. SCIENCE, 2004, 303 (5660) : 989 - 990