Kinematics control of redundant manipulators using a CMAC neural network combined with a genetic algorithm

被引:19
作者
Li, YM [1 ]
Leong, SH [1 ]
机构
[1] Univ Macau, Dept Electromech Engn, Fac Sci & Technol, Taipa, Macau SAR, Peoples R China
关键词
redundant manipulators; kinematics; CMAC neural networks;
D O I
10.1017/S0263574704000414
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
A method is proposed to solve the inverse kinematics and control problems of robot control systems using a cerebellar model articulation controller neural network combined with a genetic algorithm. Computer simulations and experiments with a 7-DOF redundant modular manipulator have demonstrated the effectiveness of the proposed method.
引用
收藏
页码:611 / 621
页数:11
相关论文
共 11 条
[1]  
[Anonymous], 1997, OPENGL PROGRAMMING G
[2]  
Bengio S., 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence (Cat. No.94TH0650-2), P324, DOI 10.1109/ICEC.1994.349932
[3]  
GRIGNON MP, 1999, P DETC99 1999 ASME D
[4]  
Li Y, 2003, ICOM 2003: INTERNATIONAL CONFERENCE ON MECHATRONICS, P229
[5]  
LI Y, 2003, J MECH ENG, V54, P65
[6]  
Macnab CJB, 1998, IEEE INT CONF ROBOT, P511, DOI 10.1109/ROBOT.1998.677025
[7]   CMAC - AN ASSOCIATIVE NEURAL NETWORK ALTERNATIVE TO BACKPROPAGATION [J].
MILLER, WT ;
GLANZ, FH ;
KRAFT, LG .
PROCEEDINGS OF THE IEEE, 1990, 78 (10) :1561-1567
[8]  
MILLER WT, 1994, IMPLEMENTATION CEREB
[9]  
Sciavicco L., 1996, MODELING CONTROL ROB
[10]  
Tsoukalas L. H., 1997, FUZZY NEURAL APPROAC