On why an algorithmic time complexity measure can be system invariant rather than system independent

被引:7
作者
Chakraborty, Soubhk [1 ]
Sourabh, Suman Kumar
机构
[1] TM Bhagalpur Univ, Marwari Coll, Dept Stat, Bhagalpur 812007, India
[2] TM Bhagalpur Univ, Dept Stat & Comp Applicat, Bhagalpur 812007, India
关键词
Amir Schoor's algorithm; sparse matrices; dense matrices; average case complexity; big oh;
D O I
10.1016/j.amc.2007.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper argues that it suffices for an algorithmic time complexity measure to be system invariant rather than system independent (which means predicting from the desk). (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 12 条
[1]  
AHO H, 2000, DATA STRUCTURES ALGO
[2]  
CHAKRABORTY S, 2000, APPL MATH LETT, V13
[3]  
CHAKRABORTY S, 2004, J INTERSTAT
[4]  
CHAKRABORTY S, 1999, APPL MATH LETT, V12
[5]  
CHAKRABORTY S, IN PRESS J APPL MATH
[6]  
CHAKRABORTY S, 2006, STAT ADVENTURE TOWAR
[7]  
KNUTH DE, 2000, ART COMPUTER PROGRAM, V2
[8]  
KUSSMAUL K, 1966, TECHNOMETRICS, V11
[9]  
SACKS J, 1989, DESIGN ANAL COMPUTER, V4
[10]  
SAHNI S, 2000, DATA STRUCTURE ALGOR