Topology of Parametrized Motion Planning Algorithms

被引:12
作者
Cohen, Daniel C. [1 ]
Farber, Michael [2 ]
Weinberger, Shmuel [3 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[3] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
英国工程与自然科学研究理事会;
关键词
parametrized topological complexity; topological robotics; obstacle-avoiding collision-free motion planning; COMPLEXITY;
D O I
10.1137/20M1358505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and study a new concept of parametrized topological complexity: a topological invariant motivated by the motion planning problem of robotics. In the parametrized setting, a motion planning algorithm has a high degree of universality and flexibility and can function under a variety of external conditions (such as positions of obstacles). We explicitly compute the parametrized topological complexity of obstacle-avoiding collision-free motion of many particles (robots) in 3-dimensional space. Our results show that the parametrized topological complexity can be significantly higher than the standard (nonparametrized) invariant.
引用
收藏
页码:229 / 249
页数:21
相关论文
共 21 条
  • [1] [Anonymous], 1981, Algebraic topology
  • [2] [Anonymous], 2006, Planning algorithms, Complexity
  • [3] [Anonymous], 1962, Mathematica Scandinavica, DOI [10.7146/math.scand.a-10517, DOI 10.7146/MATH.SCAND.A-10517]
  • [4] [Anonymous], 1989, SIGMA SER PURE MATH
  • [5] Min-Type Morse Theory for Configuration Spaces of Hard Spheres
    Baryshnikov, Yuliy
    Bubenik, Peter
    Kahle, Matthew
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (09) : 2577 - 2592
  • [6] Borsuk K., 1967, MONOGRAFIE MATEMATYC, V44
  • [7] Configuration spaces of thick particles on a metric graph
    Deeley, Kenneth
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (04): : 1861 - 1892
  • [8] The topological complexity of the free product
    Dranishnikov, Alexander
    Sadykov, Rustam
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (1-2) : 407 - 416
  • [9] Fadell E., 2001, SPRINGER MONOGR MATH
  • [10] Farber M, 2006, NATO SCI SER II-MATH, V217, P185