Human-specific tandem repeat expansion and differential gene expression during primate evolution

被引:68
|
作者
Sulovari, Arvis [1 ]
Li, Ruiyang [1 ]
Audano, Peter A. [1 ]
Porubsky, David [1 ]
Vollger, Mitchell R. [1 ]
Logsdon, Glennis A. [1 ]
Warren, Wesley C. [2 ]
Pollen, Alex A. [3 ]
Chaisson, Mark J. P. [1 ,4 ]
Eichler, Evan E. [1 ,5 ]
机构
[1] Univ Washington, Sch Med, Dept Genome Sci, Seattle, WA 98195 USA
[2] Univ Missouri, Bond Life Sci Ctr, Columbia, MO 65201 USA
[3] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA
[4] Univ Southern Calif, Quantitat & Computat Biol, Los Angeles, CA 90089 USA
[5] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
关键词
tandem repeat; STR; VNTR; tandem repeat expansion; genome instability; GENOME-WIDE ASSOCIATION; HEXANUCLEOTIDE REPEAT; SUSCEPTIBILITY LOCI; INSULIN GENE; CGG REPEAT; INSTABILITY; GENERATION; MUTATIONS; REGIONS; C9ORF72;
D O I
10.1073/pnas.1912175116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Short tandem repeats (STRs) and variable number tandem repeats (VNTRs) are important sources of natural and disease-causing variation, yet they have been problematic to resolve in reference genomes and genotype with short-read technology. We created a framework tomodel the evolution and instability of STRs and VNTRs in apes. We phased and assembled 3 ape genomes (chimpanzee, gorilla, and orangutan) using long-read and 10x Genomics linked-read sequence data for 21,442 human tandem repeats discovered in 6 haplotype-resolved assemblies of Yoruban, Chinese, and Puerto Rican origin. We define a set of 1,584 STRs/VNTRs expanded specifically in humans, including large tandem repeats affecting coding and noncoding portions of genes (e.g., MUC3A, CACNA1C). We show that short interspersed nuclear element-VNTR-Alu (SVA) retrotransposition is the main mechanism for distributing GC-rich human-specific tandem repeat expansions throughout the genome but with a bias against genes. In contrast, we observe that VNTRs not originating from retrotransposons have a propensity to cluster near genes, especially in the subtelomere. Using tissue-specific expression from human and chimpanzee brains, we identify genes where transcript isoform usage differs significantly, likely caused by cryptic splicing variation within VNTRs. Using single-cell expression from cerebral organoids, we observe a strong effect for genes associated with transcription profiles analogous to intermediate progenitor cells. Finally, we compare the sequence composition of some of the largest human-specific repeat expansions and identify 52 STRs/VNTRs with at least 40 uninterrupted pure tracts as candidates for genetically unstable regions associated with disease.
引用
收藏
页码:23243 / 23253
页数:11
相关论文
共 50 条
  • [1] Evolution of a Human-Specific Tandem Repeat Associated with ALS
    Course, Meredith M.
    Gudsnuk, Kathryn
    Smukowski, Samuel N.
    Winston, Kosuke
    Desai, Nitin
    Ross, Jay P.
    Sulovari, Arvis
    Bourassa, Cynthia, V
    Spiegelman, Dan
    Couthouis, Julien
    Yu, Chang-En
    Tsuang, Debby W.
    Jayadev, Suman
    Kay, Mark A.
    Gitler, Aaron D.
    Dupre, Nicolas
    Eichler, Evan E.
    Dion, Patrick A.
    Rouleau, Guy A.
    Valdmanis, Paul N.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2020, 107 (03) : 445 - 460
  • [2] Birth of 'human-specific' genes during primate evolution
    Nahon, JL
    GENETICA, 2003, 118 (2-3) : 193 - 208
  • [3] Birth of ‘Human-Specific’ Genes During Primate Evolution
    Jean-Louis Nahon
    Genetica, 2003, 118 : 193 - 208
  • [4] Characterization of a Human-Specific Tandem Repeat Associated with Bipolar Disorder and Schizophrenia
    Song, Janet H. T.
    Lowe, Craig B.
    Kingsley, David M.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2018, 103 (03) : 421 - 430
  • [5] The Role of Human-Specific Gene Duplications During Brain Development and Evolution
    Sassa, Takayuki
    JOURNAL OF NEUROGENETICS, 2013, 27 (03) : 86 - 96
  • [6] Expansion of GGC repeat in the human-specific NOTCH2NLC gene is associated with essential tremor
    Sun, Qi-Ying
    Xu, Qian
    Tian, Yun
    Hu, Zheng-Mao
    Qin, Li-Xia
    Yang, Jin-Xia
    Huang, Wen
    Xue, Jin
    Li, Jin-Chen
    Zeng, Sheng
    Wang, Ying
    Min, Hao-Xuan
    Chen, Xiao-Yu
    Wang, Jun-Pu
    Xie, Bin
    Liang, Fan
    Zhang, Hai-Nan
    Wang, Chun-Yu
    Lei, Li-Fang
    Yan, Xin-Xiang
    Xu, Hong-Wei
    Duan, Ran-Hui
    Xia, Kun
    Liu, Jing-Yu
    Jiang, Hong
    Shen, Lu
    Guo, Ji-Feng
    Tang, Bei-Sha
    BRAIN, 2020, 143 : 222 - 233
  • [7] Human-specific gene expression patterns in oligodendrocytes
    Konopka, G.
    GLIA, 2021, 69 : E36 - E36
  • [8] Evolution of human-specific gene coexpression networks in neocortex
    Konopka, Genevieve
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2016, 159 : 195 - 195
  • [9] Human-specific loss of regulatory DNA and the evolution of human-specific traits
    McLean, Cory Y.
    Reno, Philip L.
    Pollen, Alex A.
    Bassan, Abraham I.
    Capellini, Terence D.
    Guenther, Catherine
    Indjeian, Vahan B.
    Lim, Xinhong
    Menke, Douglas B.
    Schaar, Bruce T.
    Wenger, Aaron M.
    Bejerano, Gill
    Kingsley, David M.
    NATURE, 2011, 471 (7337) : 216 - 219
  • [10] Human-specific loss of regulatory DNA and the evolution of human-specific traits
    Cory Y. McLean
    Philip L. Reno
    Alex A. Pollen
    Abraham I. Bassan
    Terence D. Capellini
    Catherine Guenther
    Vahan B. Indjeian
    Xinhong Lim
    Douglas B. Menke
    Bruce T. Schaar
    Aaron M. Wenger
    Gill Bejerano
    David M. Kingsley
    Nature, 2011, 471 : 216 - 219