Learning-aided joint time-frequency channel estimation for 5G new radio

被引:0
|
作者
Myers, Nitin Jonathan [1 ]
Kwon, Hyukjoon [2 ]
Ding, Yacong [2 ]
Song, Kee-Bong [2 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, Delft, Netherlands
[2] Samsung Semicond Inc, San Diego, CA USA
来源
2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2021年
关键词
5G NR; deep learning; channel estimation;
D O I
10.1109/GLOBECOM46510.2021.9685651
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a learning-aided signal processing solution for channel estimation in 5G new radio (NR). Channel estimation is an important algorithm for baseband modem design. In 5G NR, estimating the channel is challenging due to two reasons. First, the pilot signals are transmitted over a small fraction of the available time-frequency resources. Second, the real time nature of physical layer processing introduces a strict limitation on the computational complexity of channel estimation. To this end, we propose a channel estimation technique that integrates a small one hidden layer neural network between two linear minimum mean squared error (LMMSE) interpolation blocks. While the neural network leverages the advantages of offline data-driven learning, the LMMSE blocks exploit the second order online channel statistics along time and frequency dimensions. The training procedure tunes the weights of the neural network by back-propagating through the time domain LMMSE interpolation block. We derive bounds on the training loss with the proposed method and show that our approach can improve the channel estimate.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A Generalized Channel Dataset Generator for 5G New Radio Systems Based on Ray-Tracing
    Zhang, Yibin
    Sun, Jinlong
    Gui, Guan
    Gacanin, Haris
    Sari, Hikmet
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (11) : 2402 - 2406
  • [42] Recurrent neural networks for enhanced joint channel estimation and interference cancellation in FBMC and OFDM systems: unveiling the potential for 5G networks
    Al-Makhlasawy, Rasha M.
    Khairy, Mayada
    El-Shafai, Walid
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2023, 2023 (01)
  • [43] Channel Estimation Using Deep Learning on an FPGA for 5G Millimeter-Wave Communication Systems
    Chundi, Pavan Kumar
    Wang, Xiaodong
    Seok, Mingoo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (02) : 908 - 918
  • [44] LSTM-Based Time-Frequency Domain Channel Estimation for OTFS Modulation
    dos Reis, Ana Flavia
    Chang, Bruno Sens
    Medjahdi, Yahia
    Brante, Glauber
    Bader, Faouzi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (10) : 15049 - 15060
  • [45] Carrier Frequency Offset Estimation in 5G NR: Introducing Gradient Boosting Machines
    Hussien, Mostafa
    Abdelmoaty, Ahmed
    Elsaadany, Mahmoud
    Ahmed, Mohammed F. A.
    Gagnon, Ghyslain
    Nguyen, Kim Khoa
    Cheriet, Mohamed
    IEEE ACCESS, 2023, 11 : 34128 - 34137
  • [46] Robust Channel Estimation in Multiuser Downlink 5G Systems Under Channel Uncertainties
    Pourkabirian, Azadeh
    Anisi, Mohammad Hossein
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (12) : 4569 - 4582
  • [47] Enhancing 5G Radio Planning with Graph Representations and Deep Learning
    Almasan, Paul
    Suarez-Varela, Jose
    Lutu, Andra
    Cabellos-Aparicio, Albert
    Barlet-Ros, Pere
    PROCEEDINGS OF THE 2023 3RD ACM WORKSHOP ON 5G AND BEYOND NETWORK MEASUREMENTS, MODELING, AND USE CASES, 5G-MEMU 2023, 2023, : 14 - 20
  • [48] 5G cascaded channel estimation using convolutional neural networks
    Coutinho, Fabio D. L. S.
    Silva, Hugerles S.
    Georgieva, Petia
    Oliveira, Arnaldo S. R.
    DIGITAL SIGNAL PROCESSING, 2022, 126
  • [49] Channel Estimation for 5G Non-Terrestrial Communication Systems
    Zhao, Haifeng
    Zhang, Yasheng
    Wei, Kaixiang
    Liu, Yifeng
    2024 5TH INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE, ICTC 2024, 2024, : 210 - 215
  • [50] Deep-Learning-Aided Joint Channel Estimation and Data Detection for Spatial Modulation
    Xiang, Luping
    Liu, Yusha
    Van Luong, Thien
    Maunder, Robert G.
    Yang, Lie-Liang
    Hanzo, Lajos
    IEEE ACCESS, 2020, 8 (08): : 191910 - 191919