Phase-change materials: The view from the liquid phase and the metallicity parameter

被引:30
作者
Wei, Shuai [1 ]
Lucas, Pierre [2 ]
Angell, C. Austen [3 ]
机构
[1] Rhein Westfal TH Aachen, Inst Phys, Aachen, Germany
[2] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA
[3] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
liquid; glass; metal; semiconducting; phase transformation; SEMICONDUCTOR-METAL TRANSITION; HEAT-CAPACITY; TEMPERATURE-DEPENDENCE; CHALCOGENIDE GLASSES; DENSITY-MEASUREMENTS; RANGE-ORDER; SB-TE; CRYSTALLIZATION; SE; RELAXATION;
D O I
10.1557/mrs.2019.207
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
While fast-switching rewritable nonvolatile memory units based on phase-change materials (PCMs) are already in production aT(m)ajor technology companies such as Intel (16-64 GB chips are currently available), an in-depth understanding of the physical factors that determine their success is still lacking. Recently, we have argued for a liquid-phase metal-to-semiconductor transition (M-SC), located not far below the melting point, T-m, as essential. The M-SC is itself a consequence of atomic rearrangements that are involved in a fragile-to-strong viscosity transition that controls both the speed of crystallization and the stabilization of the semiconducting state. Here, we review past work and introduce a new parameter, the "metallicity" (inverse of the average Pauling electronegativity of a multicomponent alloy). When T-m -scaled temperatures of known M-SCs of Group IV, V, and VI alloys are plotted against their metallicities, the curvilinear plot leads directly to the composition zone of all known PCMs and the temperature interval below T-m, where the transition should occur. The metallicity concept could provide guidance for tailoring PCMs.
引用
收藏
页码:691 / 698
页数:8
相关论文
共 65 条
[1]   ON TEMPERATURE DEPENDENCE OF COOPERATIVE RELAXATION PROPERTIES IN GLASS-FORMING LIQUIDS [J].
ADAM, G ;
GIBBS, JH .
JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (01) :139-&
[2]  
Alekseev V. A., 1980, Soviet Physics - Uspekhi, V23, P551, DOI 10.1070/PU1980v023n09ABEH005855
[3]   ELECTRONEGATIVITY VALUES FROM THERMOCHEMICAL DATA [J].
ALLRED, AL .
JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1961, 17 (3-4) :215-221
[4]   SUPERCOOLED WATER [J].
ANGELL, CA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1983, 34 :593-630
[5]   FORMATION OF GLASSES FROM LIQUIDS AND BIOPOLYMERS [J].
ANGELL, CA .
SCIENCE, 1995, 267 (5206) :1924-1935
[6]   Relaxation in glassforming liquids and amorphous solids [J].
Angell, CA ;
Ngai, KL ;
McKenna, GB ;
McMillan, PF ;
Martin, SW .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (06) :3113-3157
[7]  
Betts F., 1972, Journal of Non-Crystalline Solids, V7, P417, DOI 10.1016/0022-3093(72)90276-1
[8]   Vitrification of a monatomic metallic liquid [J].
Bhat, M. H. ;
Molinero, V. ;
Soignard, E. ;
Solomon, V. C. ;
Sastry, S. ;
Yarger, J. L. ;
Angell, C. A. .
NATURE, 2007, 448 (7155) :787-U3
[9]   PHASE-DIAGRAM OF THE TERNARY-SYSTEM GE-SB-TE .2. THE SUBTERNARY GE-GETE-SB2TE3-SB [J].
BORDAS, S ;
CLAVAGUERAMORA, MT ;
LEGENDRE, B ;
HANCHENG, C .
THERMOCHIMICA ACTA, 1986, 107 :239-265
[10]   Crystallization Kinetics of GeSbTe Phase-Change Nanoparticles Resolved by Ultrafast Calorimetry [J].
Chen, Bin ;
ten Brink, Gert H. ;
Palasantzas, George ;
Kooi, Bart J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (15) :8569-8578