Multiplicative versions of Klyachko's theorem in finite factors

被引:2
作者
Harada, Tetsuo
机构
[1] Higashi-ku, Fukuoka, 812-0053
关键词
Gelfand-Naimark inequality; Klyachko's theorem; operator inequalities; singular number;
D O I
10.1016/j.laa.2007.03.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A and B be invertible positive elements in a II1-factor U, and let mu(s), ((.)) be the singular number on U. We prove that exp integral(k) log mu(s)(AB)ds <= exp integral(I) log mu(s)(A)ds (.) exp integral(J) log mu(s)(B)ds, where {I, J, K} is an analogue of Klyachko's list. In this paper, this family I I, J, K I must satisfy some hypotheses which are specific to operators A and B. But, we show that Our family of inequalities includes the weak Gelfand-Naimark inequality for all positive operators A and B. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:102 / 108
页数:7
相关论文
共 14 条
[1]  
[Anonymous], 1996, MATRIX ANAL
[2]  
Bercovici H, 2001, OPER THEOR, V127, P113
[3]   GENERALIZED S-NUMBERS OF TAU-MEASURABLE OPERATORS [J].
FACK, T ;
KOSAKI, H .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 123 (02) :269-300
[4]   DETERMINANT THEORY IN FINITE FACTORS [J].
FUGLEDE, B ;
KADISON, RV .
ANNALS OF MATHEMATICS, 1952, 55 (03) :520-530
[5]   Eigenvalues, invariant factors, highest weights, and Schubert calculus [J].
Fulton, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 37 (03) :209-249
[6]   MAJORIZATIONS FOR GENERALIZED S-NUMBERS IN SEMIFINITE VONNEUMANN-ALGEBRAS [J].
HIAI, F ;
NAKAMURA, Y .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (01) :17-27
[7]   EIGENVALUES OF SUMS OF HERMITIAN MATRICES [J].
HORN, A .
PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (01) :225-&
[8]  
Klyachko A, 1988, SELECTA MATH, V4, P419, DOI [10.1007/s000290050037, DOI 10.1007/S000290050037]
[9]   The Lidskii-Mirsky-Wielandt theorem - additive and multiplicative versions [J].
Li, CK ;
Mathias, R .
NUMERISCHE MATHEMATIK, 1999, 81 (03) :377-413
[10]  
Nelson E., 1974, Journal of Functional Analysis, V15, P103, DOI 10.1016/0022-1236(74)90014-7