Cellulose fibres have significant importance and potential for polymer reinforcement. It is essential to modify the surface of the fibre to obtain good fibre-matrix interface. Surface treatments can increase surface roughness of the fibre, change its chemical composition and introduce new moieties that can effectively interlock with the matrix, resulting in good mechanical properties in the composites. This is mainly due to improved fibre-matrix adhesion. The treatments may also reduce the water absorption rate by converting part of the hydroxyl groups on the fibre surface into other functional groups. Chemical modification of the surface of a regenerated cellulose fibre of the Lyocell type was carried out by alkali and silane treatments, which significantly changed the properties of the Lyocell fibres. Three parameters were considered when the fibre surface treatment was done: concentration (2-15 wt%), temperature (25 and 50 degrees C) and time (30 min-72 h). Fourier transform infrared spectroscopy and Raman spectroscopy were used for chemical analysis and qualitative analysis of the cellulose crystallinity due to the surface treatments; subsequently, mechanical strength of the fibres was tested by tensile testing. Weight loss, moisture regain and swelling measurements were taken before and after treatments, which showed the obvious changes in fibre properties on treatment. Heat capacity of the fibres was measured for untreated and treated fibres, and thermal degradation of fibres was examined to see the stability of fibres at elevated temperatures. Wettability and surface energies were measured using dynamic contact angle method in three wetting mediums. Scanning electron microscopy was used to study the morphological properties of the fibres.
机构:
Lulea Univ Technol, Dept Engn Sci & Math, Div Mat Sci, S-97187 Lulea, Sweden
Cadi Ayyad Univ, Fac Sci & Technol, Lab Organometall & Macromol Chem Composite Mat, Ave Abdelkrim El Khattabi BP 549, Marrakech, Morocco
Mohammed VI Polytech Univ, Dept Mat Sci & Nanoengn, Lot 660, Hay Moulay Rachid 43150, Ben Guerir, MoroccoLulea Univ Technol, Dept Engn Sci & Math, Div Mat Sci, S-97187 Lulea, Sweden
Hajlane, Abdelghani
论文数: 引用数:
h-index:
机构:
Joffe, Roberts
Kaddami, Hamid
论文数: 0引用数: 0
h-index: 0
机构:
Cadi Ayyad Univ, Fac Sci & Technol, Lab Organometall & Macromol Chem Composite Mat, Ave Abdelkrim El Khattabi BP 549, Marrakech, MoroccoLulea Univ Technol, Dept Engn Sci & Math, Div Mat Sci, S-97187 Lulea, Sweden