Asymptotic stability for a strongly coupled Klein-Gordon system in an inhomogeneous medium with locally distributed damping

被引:6
|
作者
Cavalcanti, M. M. [1 ]
Domingos Cavalcanti, V. N. [1 ]
Mansouri, S. [2 ]
Gonzalez Martinez, V. H. [1 ]
Hajjej, Z. [3 ]
Astudillo Rojas, M. R. [4 ]
机构
[1] Univ Estadual Maringa, Dept Math, BR-87020900 Maringa, PR, Brazil
[2] Monastir Univ, Fac Sci Monastir, Dept Math, Monastir 5019, Tunisia
[3] Univ Gabes, Fac Sci Gabes, Dept Math, Gabes 6029, Tunisia
[4] Univ Fed Sao Paulo, Inst Sci & Technol, BR-12247014 Sao Jose Dos Campos, SP, Brazil
关键词
Wave equations; Klein-Gordon system; Frictional damping; Exponential stability; WAVE-EQUATION; DECAY-RATES; UNIFORM STABILIZATION; EXACT CONTROLLABILITY; HYPERBOLIC SYSTEMS; NONLINEAR-SYSTEM; COMPACT SURFACES; BOUNDARY; SCHRODINGER;
D O I
10.1016/j.jde.2019.08.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a strongly coupled Klein-Gordon system posed in an inhomogeneous medium Omega with smooth boundary partial derivative Omega subject to a local damping distributed around a neighborhood omega of the boundary according to the Geometric Control Condition. We show that the energy of the system goes uniformly and exponentially to zero for all initial data of finite energy taken in bounded sets of finite energy phase-space. For this purpose, refined microlocal analysis arguments are considered by exploiting ideas due to Burq and Gerard [16]. By using sharp L-p - L-q -Carleman estimates we prove a unique continuation property for coupled systems. We also consider a strongly coupled system of wave equations with localized nonlinear damping acting only on one equation. Considering a compact Riemannian manifold, we show that the energy of the coupled system goes uniformly to zero. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:447 / 489
页数:43
相关论文
共 25 条
  • [11] Uniform decay rate estimates for the coupled semilinear wave system in inhomogeneous media with locally distributed nonlinear damping
    Almeida, A. F.
    Cavalcanti, M. M.
    Gonzalez, R. B.
    Gonzalez Martinez, V. H.
    Zanchetta, J. P.
    ASYMPTOTIC ANALYSIS, 2020, 117 (1-2) : 67 - 111
  • [12] Well-Posedness and Stability for a System of Klein-Gordon Equations
    Latioui, Naaima
    Guesmia, Amar
    Ouaoua, Amar
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [13] Global nonexistence of solution for coupled nonlinear Klein-Gordon with degenerate damping and source terms
    Ouchenane, Djamel
    Khalili, Zineb
    Yazid, Fares
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2022, 67 (04): : 801 - 815
  • [14] Local uniform stability for the semilinear wave equation in inhomogeneous media with locally distributed Kelvin-Voigt damping
    Astudillo, M.
    Cavalcanti, M. M.
    Fukuoka, R.
    Gonzalez Martinez, V. H.
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (14-15) : 2145 - 2159
  • [15] Uniform stability of a semilinear coupled Timoshenko beam and an elastodynamic system in an inhomogeneous medium
    Mansouri, Sabeur
    APPLICABLE ANALYSIS, 2024, 103 (15) : 2808 - 2828
  • [16] ASYMPTOTIC STABILITY OF THE WAVE EQUATION ON COMPACT SURFACES AND LOCALLY DISTRIBUTED DAMPING-A SHARP RESULT
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domincos
    Fukuoka, R.
    Soriano, J. A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) : 4561 - 4580
  • [18] Uniform decay and blow-up of solutions for coupled nonlinear Klein-Gordon equations with nonlinear damping terms
    Piskin, Erhan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (18) : 3036 - 3047
  • [19] Asymptotic stability for the Dirac-Klein-Gordon system in two space dimensions
    Dong, Shijie
    Wyatt, Zoe
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2024, 41 (06): : 1419 - 1464
  • [20] Global nonexistence of solutions to system of Klein-Gordon equations with degenerate damping and strong source terms in viscoelasticity
    Yazid, Fares
    Ouchenane, Djamel
    Zennir, Khaled
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2022, 67 (03): : 563 - 578