Deformations in Si-Li Anodes Upon Electrochemical Alloying in Nano-Confined Space

被引:302
作者
Hertzberg, Benjamin [1 ]
Alexeev, Alexander [2 ]
Yushin, Gleb [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
LITHIUM-ION BATTERIES; LONG CYCLE LIFE; NEGATIVE ELECTRODES; HIGH-CAPACITY; PERFORMANCE; NANOWIRES; FILM;
D O I
10.1021/ja1031997
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The energy density of Li-ion batteries can be increased if graphitic anodes are replaced with nanostructured Si-based materials. Design of efficient Si anodes requires a better fundamental understanding of the possible changes in Si-Li alloy morphology during cycling. Here we propose a simple elastoplastic model to predict morphological changes in Si upon electrochemical reaction with Li in a confined geometry, such as a pore of a carbon nanotube (CNT). Our experiments with CNTs having inner Si coatings of different thicknesses confirmed the theoretical predictions and demonstrated irreversible shape changes in the first cycle and fully reversible shape changes in subsequent cycles. During the first lithiation, Si was found to adapt to the restricted shape of the rigid CNT pore and plastically deform during electrochemical alloying with Li. The sequential Li insertion and extraction periodically alters the tube size between the expanded and contracted states. The produced samples of porous Si with rigid CNT outer shell showed capacity up to 2100 mAh/g, stable performance for over 250 cycles, and outstanding average Coulombic efficiency in excess of 99.9%. CNT walls were demonstrated to withstand stresses caused by the initial Si expansion and Li intercalation.
引用
收藏
页码:8548 / +
页数:4
相关论文
共 20 条
  • [1] Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries
    Aurbach, D
    [J]. JOURNAL OF POWER SOURCES, 2000, 89 (02) : 206 - 218
  • [2] Si electrodes for li-ion batteries - A new way to look at an old problem
    Beattie, S. D.
    Larcher, D.
    Morcrette, M.
    Simon, B.
    Tarascon, J. -M.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) : A158 - A163
  • [3] Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries
    Bridel, J. -S.
    Azais, T.
    Morcrette, M.
    Tarascon, J. -M.
    Larcher, D.
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 1229 - 1241
  • [4] High-performance lithium battery anodes using silicon nanowires
    Chan, Candace K.
    Peng, Hailin
    Liu, Gao
    McIlwrath, Kevin
    Zhang, Xiao Feng
    Huggins, Robert A.
    Cui, Yi
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (01) : 31 - 35
  • [5] CHAN CK, 2009, J POWER SOURCES, V34
  • [6] Enhanced reversible lithium storage in a nanosize silicon/graphene composite
    Chou, Shu-Lei
    Wang, Jia-Zhao
    Choucair, Mohammad
    Liu, Hua-Kun
    Stride, John A.
    Dou, Shi-Xue
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (02) : 303 - 306
  • [7] Lithium alloy negative electrodes
    Huggins, RA
    [J]. JOURNAL OF POWER SOURCES, 1999, 81 : 13 - 19
  • [8] Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery
    Kang, Kibum
    Lee, Hyun-Seung
    Han, Dong-Wook
    Kim, Gil-Sung
    Lee, Donghun
    Lee, Geunhee
    Kang, Yong-Mook
    Jo, Moon-Ho
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (05)
  • [9] Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material
    Kim, Hyesun
    Cho, Jaephil
    [J]. NANO LETTERS, 2008, 8 (11) : 3688 - 3691
  • [10] Sodium carboxymethyl cellulose - A potential binder for Si negative electrodes for Li-ion batteries
    Li, Jing
    Lewis, R. B.
    Dahn, J. R.
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (02) : A17 - A20