Geometry of Maurer-Cartan Elements on Complex Manifolds

被引:10
作者
Chen, Zhuo [1 ]
Stienon, Mathieu [2 ]
Xu, Ping [3 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[2] Univ Paris Diderot, Inst Math Jussieu, F-75205 Paris 13, France
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
LIE BIALGEBROIDS; DEFORMATION QUANTIZATION; GERSTENHABER ALGEBRAS; POISSON GROUPOIDS; COHOMOLOGY; GERBES;
D O I
10.1007/s00220-010-1029-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The semi-classical data attached to stacks of algebroids in the sense of Kashiwara and Kontsevich are Maurer-Cartan elements on complex manifolds, which we call extended Poisson structures as they generalize holomorphic Poisson structures. A canonical Lie algebroid is associated to each Maurer-Cartan element. We study the geometry underlying these Maurer-Cartan elements in the light of Lie algebroid theory. In particular, we extend Lichnerowicz-Poisson cohomology and Koszul-Brylinski homology to the realm of extended Poisson manifolds; we establish a sufficient criterion for these to be finite dimensional; we describe how homology and cohomology are related through the Evens-Lu-Weinstein duality module; and we describe a duality on Koszul-Brylinski homology, which generalizes the Serre duality of Dolbeault cohomology.
引用
收藏
页码:169 / 187
页数:19
相关论文
共 35 条
[1]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[2]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[3]  
Berest Y, 2004, J REINE ANGEW MATH, V568, P81
[4]  
BLOCK J, 2009, DUALITY EQUIVALENCE
[5]   Deformation quantization of gerbes [J].
Bressler, Paul ;
Gorokhovsky, Alexander ;
Nest, Ryszard ;
Tsygan, Boris .
ADVANCES IN MATHEMATICS, 2007, 214 (01) :230-266
[6]  
Bressler Paul., 2008, K THEORY NONCOMMUTAT, P349
[7]  
CAINE A, 2009, TORIC POISSON STRUCT
[8]  
CHEVALLEY C, 1997, COLLECT WORKS, P2
[9]  
Cleyton R, 2008, ASIAN J MATH, V12, P225
[10]   Poisson harmonic forms, Kostant harmonic forms, and the S1-equivariant cohomology of K/T [J].
Evens, S ;
Lu, JH .
ADVANCES IN MATHEMATICS, 1999, 142 (02) :171-220