Multi-view support vector ordinal regression with data uncertainty

被引:10
作者
Xiao, Yanshan [1 ]
Li, Xi [1 ]
Liu, Bo [2 ]
Zhao, Liang [1 ]
Kong, Xiangjun [1 ]
Alhudhaif, Adi [3 ]
Alenezi, Fayadh [4 ]
机构
[1] Guangdong Univ Technol, Dept Comp Sci, Guangzhou, Peoples R China
[2] Guangdong Univ Technol, Dept Automat, Guangzhou, Peoples R China
[3] Prince Sattam bin Abdulaziz Univ, Coll Comp Engn & Sci Al Kharj, Dept Comp Sci, Al Kharj, Saudi Arabia
[4] Jouf Univ, Coll Engn, Dept Elect Engn, Sakakah, Saudi Arabia
关键词
Ordinal regression; Multi-view learning; Uncertain data; ALGORITHM;
D O I
10.1016/j.ins.2021.12.128
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ordinal regression (OR) is a paradigm which learns a prediction model on the data with ordered classes. Despite much progress in OR, the existing OR works learn the classifier from only one view and the multi-view learning in OR has not been considered. What is more, there may exist uncertain information in the multi-view OR data. In this paper, we put forward a novel approach, called multi-view support vector ordinal regression with uncertain data (MORU), which can improve the OR classifier by incorporating the multiview information and handling the data uncertainty. In our method, a series of parallel hyperplanes are applied to separate the multi-view ordered data, and the uncertain information is considered in the input data. Then, we adopt a heuristic framework to solve the OR learning problem. Experimental results have illustrated that our method obtains superior performance to the existing OR techniques. (C) 2021 Published by Elsevier Inc.
引用
收藏
页码:516 / 530
页数:15
相关论文
共 40 条
  • [1] Aggarwal CC, 2008, PROC INT CONF DATA, P150, DOI 10.1109/ICDE.2008.4497423
  • [2] A Survey of Uncertain Data Algorithms and Applications
    Aggarwal, Charu C.
    Yu, Philip S.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (05) : 609 - 623
  • [3] Alonso J, 2008, LECT NOTES ARTIF INT, V5211, P39, DOI 10.1007/978-3-540-87479-9_21
  • [4] Ordinal Regression Methods: Survey and Experimental Study
    Antonio Gutierrez, Pedro
    Perez-Ortiz, Maria
    Sanchez-Monedero, Javier
    Fernandez-Navarro, Francisco
    Hervas-Martinez, Cesar
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (01) : 127 - 146
  • [5] Chang KY, 2011, PROC CVPR IEEE, P585, DOI 10.1109/CVPR.2011.5995437
  • [6] CHU W, 2005, INT C MACH LEARN
  • [7] Support vector ordinal regression
    Chu, Wei
    Keerthi, S. Sathiya
    [J]. NEURAL COMPUTATION, 2007, 19 (03) : 792 - 815
  • [8] Rank aggregation methods dealing with ordinal uncertain preferences
    Dopazo, Esther
    Martinez-Cespedes, Maria L.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2017, 78 : 103 - 109
  • [9] DRAGOMIR S. S., 2003, JIPAM J INEQUAL PURE, V4