piRNN: deep learning algorithm for piRNA prediction

被引:27
作者
Wang, Kai [1 ]
Hoeksema, Joshua [2 ]
Liang, Chun [1 ]
机构
[1] Miami Univ, Dept Biol, Oxford, OH 45056 USA
[2] Miami Univ, Dept Comp Sci & Software Engn, Oxford, OH 45056 USA
来源
PEERJ | 2018年 / 6卷
关键词
piRNA; Deep learning; Convolution neural network; WEB SERVER; RNA; SEQUENCE; BIOGENESIS; PATHWAY; DNA;
D O I
10.7717/peerj.5429
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Piwi-interacting RNAs (piRNAs) are the largest class of small non-coding RNAs discovered in germ cells. Identifying piRNAs from small RNA data is a challenging task due to the lack of conserved sequences and structural features of piRNAs. Many programs have been developed to identify piRNA from small RNA data. However, these programs have limitations. They either rely on extracting complicated features, or only demonstrate strong performance on transposon related piRNAs. Here we proposed a new program called piRNN for piRNA identification. For our software, we applied a convolutional neural network classifier that was trained on the datasets from four different species (Caenorhabditis elegans, Drosophila melanogaster, rat and human). A matrix of k-mer frequency values was used to represent each sequence. piRNN has great usability and shows better performance in comparison with other programs. It is freely available at https://github.com/bioinfolabmu/piRNN.
引用
收藏
页数:11
相关论文
共 33 条
[1]  
Abadi M., 2016, TENSORFLOW LARGESCAL
[2]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[3]   The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race [J].
Aravin, Alexei A. ;
Hannon, Gregory J. ;
Brennecke, Julius .
SCIENCE, 2007, 318 (5851) :761-764
[4]   Developmentally regulated piRNA clusters implicate MILI in transposon control [J].
Aravin, Alexei A. ;
Sachidanandam, Ravi ;
Girard, Angelique ;
Fejes-Toth, Katalin ;
Hannon, Gregory J. .
SCIENCE, 2007, 316 (5825) :744-747
[5]   Computational analysis of mouse piRNA sequence and biogenesis [J].
Betel, Doron ;
Sheidan, Robert ;
Marks, Debora S. ;
Sander, Chris .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (11) :2219-2227
[6]   piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism [J].
Beyret, Ergin ;
Liu, Na ;
Lin, Haifan .
CELL RESEARCH, 2012, 22 (10) :1429-1439
[7]   IpiRId: Integrative approach for piRNA prediction using genomic and epigenomic data [J].
Boucheham, Anouar ;
Sommard, Vivien ;
Zehraoui, Farida ;
Boualem, Adnane ;
Batouche, Mohamed ;
Bendahmane, Abdelhafid ;
Israeli, David ;
Tahi, Fariza .
PLOS ONE, 2017, 12 (06)
[8]   Towards a piRNA prediction using multiple kernel fusion and support vector machine [J].
Brayet, Jocelyn ;
Zehraoui, Farida ;
Jeanson-Leh, Laurence ;
Israeli, David ;
Tahi, Fariza .
BIOINFORMATICS, 2014, 30 (17) :I364-I370
[9]   GtRNAdb: a database of transfer RNA genes detected in genomic sequence [J].
Chan, Patricia P. ;
Lowe, Todd M. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D93-D97
[10]   PseKNC: A flexible web server for generating pseudo K-tuple nucleotide composition [J].
Chen, Wei ;
Lei, Tian-Yu ;
Jin, Dian-Chuan ;
Lin, Hao ;
Chou, Kuo-Chen .
ANALYTICAL BIOCHEMISTRY, 2014, 456 :53-60