Collisionless Magnetic Reconnection and Waves: Progress Review

被引:71
作者
Khotyaintsev, Yuri, V [1 ]
Graham, Daniel B. [1 ]
Norgren, Cecilia [2 ]
Vaivads, Andris [3 ]
机构
[1] Swedish Inst Space Phys, Uppsala, Sweden
[2] Univ Bergen, Dept Phys & Technol, Bergen, Norway
[3] KTH Royal Inst Technol, Dept Space & Plasma Phys, Stockholm, Sweden
来源
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES | 2019年 / 6卷
基金
瑞典研究理事会;
关键词
magnetic reconnection; turbulence; waves; instabilities; kinetic plasma processes; ELECTROSTATIC SOLITARY WAVES; WHISTLER-MODE WAVES; HYBRID DRIFT INSTABILITY; PARALLEL ELECTRIC-FIELDS; KINETIC ALFVEN WAVES; HIGH-FREQUENCY WAVES; DIFFUSION REGION; SEPARATRIX REGIONS; LARGE-AMPLITUDE; ION DIFFUSION;
D O I
10.3389/fspas.2019.00070
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Magnetic reconnection is a fundamental process whereby microscopic plasma processes cause macroscopic changes in magnetic field topology, leading to explosive energy release. Waves and turbulence generated during the reconnection process can produce particle diffusion and anomalous resistivity, as well as heat the plasma and accelerate plasma particles, all of which can impact the reconnection process. We review progress on waves related to reconnection achieved using high resolution multi-point in situ observations over the last decade, since early Cluster and THEMIS observations and ending with recent Magnetospheric Multiscale results. In particular, we focus on the waves most frequently observed in relation to reconnection, ranging from low-frequency kinetic Alfven waves (KAW), to intermediate frequency lower hybrid and whistler-mode waves, electrostatic broadband and solitary waves, as well as the high-frequency upper hybrid, Langmuir, and electron Bernstein waves. Significant progress has been made in understanding localization of the different wave modes in the context of the reconnection picture, better quantification of generation mechanisms and wave-particle interactions, including anomalous resistivity. Examples include: temperature anisotropy driven whistlers in the flux pileup region, anomalous effects due to lower-hybrid waves, upper hybrid wave generation within the electron diffusion region, wave-particle interaction of electrostatic solitary waves. While being clearly identified in observations, some of the wave processes remain challenging for reconnection simulations (electron Bernstein, upper hybrid, Langmuir, whistler), as the instabilities (streaming, loss-cone, shell) which drive these waves require high resolution of distribution functions in phase space, and realistic ratio of Debye to electron inertia scales. We discuss how reconnection configuration, i.e., symmetric vs. asymmetric, guide-field vs. antiparallel, affect wave occurrence, generation, effect on particles, and feedback on the overall reconnection process. Finally, we outline some of the major open questions, such as generation of electromagnetic radiation by reconnection sites and role of waves in triggering/onset of reconnection.
引用
收藏
页数:20
相关论文
共 135 条
[1]   Plasma sheet electromagnetic power generation and its dissipation along auroral field lines [J].
Angelopoulos, V ;
Chapman, JA ;
Mozer, FS ;
Scudder, JD ;
Russell, CT ;
Tsuruda, K ;
Mukai, T ;
Hughes, TJ ;
Yumoto, K .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A8)
[2]  
Angelopoulos V, 2008, SPACE SCI REV, V141, P453, DOI 10.1007/s11214-008-9378-4
[3]   Observation of lower hybrid drift instability in the diffusion region at a reconnecting magnetopause [J].
Bale, SD ;
Mozer, FS ;
Phan, T .
GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (24)
[4]   EXACT NONLINEAR PLASMA OSCILLATIONS [J].
BERNSTEIN, IB ;
GREENE, JM ;
KRUSKAL, MD .
PHYSICAL REVIEW, 1957, 108 (03) :546-550
[5]  
Biskamp D., 2000, Cambridge Monographs on Plasma Physics
[6]   High-Frequency Wave Generation in Magnetotail Reconnection: Linear Dispersion Analysis [J].
Burch, J. L. ;
Dokgo, K. ;
Hwang, K. J. ;
Torbert, R. B. ;
Graham, D. B. ;
Webster, J. M. ;
Ergun, R. E. ;
Giles, B. L. ;
Allen, R. C. ;
Chen, L-J ;
Wang, S. ;
Genestreti, K. J. ;
Russell, C. T. ;
Strangeway, R. J. ;
Le Contel, O. .
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (08) :4089-4097
[7]   Magnetospheric Multiscale Overview and Science Objectives [J].
Burch, J. L. ;
Moore, T. E. ;
Torbert, R. B. ;
Giles, B. L. .
SPACE SCIENCE REVIEWS, 2016, 199 (1-4) :5-21
[8]   Wave Phenomena and Beam-Plasma Interactions at the Magnetopause Reconnection Region [J].
Burch, J. L. ;
Webster, J. M. ;
Genestreti, K. J. ;
Torbert, R. B. ;
Giles, B. L. ;
Fuselier, S. A. ;
Dorelli, J. C. ;
Rager, A. C. ;
Phan, T. D. ;
Allen, R. C. ;
Chen, L. -J. ;
Wang, S. ;
Le Contel, O. ;
Russell, C. T. ;
Strangeway, R. J. ;
Ergun, R. E. ;
Jaynes, A. N. ;
Lindqvist, P. -A. ;
Graham, D. B. ;
Wilder, F. D. ;
Hwang, K. -J. ;
Goldstein, J. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (02) :1118-1133
[9]   Low Altitude Solar Magnetic Reconnection, Type III Solar Radio Bursts, and X-ray Emissions [J].
Cairns, I. H. ;
Lobzin, V. V. ;
Donea, A. ;
Tingay, S. J. ;
McCauley, P. I. ;
Oberoi, D. ;
Duffin, R. T. ;
Reiner, M. J. ;
Hurley-Walker, N. ;
Kudryavtseva, N. A. ;
Melrose, D. B. ;
Harding, J. C. ;
Bernardi, G. ;
Bowman, J. D. ;
Cappallo, R. J. ;
Corey, B. E. ;
Deshpande, A. ;
Emrich, D. ;
Goeke, R. ;
Hazelton, B. J. ;
Johnston-Hollitt, M. ;
Kaplan, D. L. ;
Kasper, J. C. ;
Kratzenberg, E. ;
Lonsdale, C. J. ;
Lynch, M. J. ;
McWhirter, S. R. ;
Mitchell, D. A. ;
Morales, M. F. ;
Morgan, E. ;
Ord, S. M. ;
Prabu, T. ;
Roshi, A. ;
Shankar, N. Udaya ;
Srivani, K. S. ;
Subrahmanyan, R. ;
Wayth, R. B. ;
Waterson, M. ;
Webster, R. L. ;
Whitney, A. R. ;
Williams, A. ;
Williams, C. L. .
SCIENTIFIC REPORTS, 2018, 8
[10]   Electron acceleration by lower hybrid waves in magnetic reconnection regions [J].
Cairns, IH ;
McMillan, BF .
PHYSICS OF PLASMAS, 2005, 12 (10) :1-8