Asymptotic behavior of solutions for the 2D micropolar equations in Sobolev-Gevrey spaces

被引:3
|
作者
Melo, Wilberclay G. [1 ]
Rocha, Nata F. [2 ]
Zingano, Paulo R. [3 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
[2] Univ Estadual Piaui, Campus Clovis Moura, BR-64078213 Teresina, PI, Brazil
[3] Univ Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada, BR-91509900 Porto Alegre, RS, Brazil
关键词
Micropolar equations; decay rates; Sobolev-Gevrey spaces; GLOBAL WELL-POSEDNESS; BLOW-UP CRITERION; LARGE-TIME DECAY; FLUID; FLOWS;
D O I
10.3233/ASY-201630
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work guarantees the existence of a positive instant t = T and a unique solution (u, w) is an element of [C ([0, T]; H-a,sigma(s) (R-2))](3) (with a > 0, sigma > 1, s > 0 and s not equal 1) for the micropolar equations. Furthermore, we consider the global existence in time of this solution in order to prove the following decay rates: lim(t ->infinity) t(s/2 )parallel to(u,w)(t)parallel to( )(2 )((H)over dota,sigma s)((R2))= lim(t ->infinity) t(s+1/2 )parallel to w(t)parallel to(2)((H)over dota,sigma s (R2))( )= lim(t ->infinity )parallel to(u,w)(t)parallel to(Ha,sigma lambda (R2) )= 0, for all lambda <= s. These limits are established by applying the estimate parallel to F-1 (e(T vertical bar.vertical bar)((u) over cap,(w) over cap (t))parallel to(Hs(R2) )<= [1 + 2M(2)](1/2), for all t >= T, where T relies only on s,mu,nu and M (the inequality above is also demonstrated in this paper). Here M is a bound for parallel to(u, w)(t)parallel to(Hs(R2)) (for all t >= 0) which results from the limits lim(t) -> infinity t(s/2 )parallel to(u,w)(t)parallel to(Hs(R2)) = lim(t ->infinity )parallel to(u, w)(t)parallel to(L2(R2)) = 0.
引用
收藏
页码:157 / 179
页数:23
相关论文
共 50 条
  • [1] Large time decay for the magnetohydrodynamics equations in Sobolev-Gevrey spaces
    Guterres, Robert
    Melo, Wilberclay G.
    Nunes, Juliana
    Perusato, Cilon
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (03): : 591 - 613
  • [2] Existence of solutions and their behavior for the anisotropic quasi-geostrophic equation in Sobolev and Sobolev-Gevrey spaces
    Melo, Wilberclay G.
    Santos, Thyago S. R.
    Costa, Natielle dos Santos
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
  • [3] Local existence, uniqueness and lower bounds of solutions for the magnetohydrodynamics equations in Sobolev-Gevrey spaces
    Melo, Wilberclay G.
    Rocha, Nata Firmino
    Zingano, Paulo R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [4] LONG TIME DECAY FOR 3D NAVIER-STOKES EQUATIONS IN SOBOLEV-GEVREY SPACES
    Benameur, Jamel
    Jlali, Lotfi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [5] Time decay rates for the generalized MHD-α equations in Sobolev-Gevrey spaces
    Melo, Wilberclay G.
    Rosa Santos, Thyago Souza
    APPLICABLE ANALYSIS, 2022, 101 (18) : 6623 - 6644
  • [6] Navier-Stokes equations: local existence, uniqueness and blow-up of solutions in Sobolev-Gevrey spaces
    Melo, Wilberclay G.
    Rocha, Nata Firmino
    Barbosa, Ezequiel
    APPLICABLE ANALYSIS, 2021, 100 (09) : 1905 - 1924
  • [7] Exponential Growth and Properties of Solutions for a Forced System of Incompressible Navier-Stokes Equations in Sobolev-Gevrey Spaces
    Palencia, Jose Luis Diaz
    MATHEMATICS, 2025, 13 (01)
  • [8] Existence, uniqueness and blow-up of solutions for the 3D Navier-Stokes equations in homogeneous Sobolev-Gevrey spaces
    Braze e Silva, P.
    Melo, W. G.
    Rocha, N. F.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):
  • [9] Well-Posedness, Blow-up Criteria and Stability for Solutions of the Generalized MHD Equations in Sobolev-Gevrey Spaces
    Guterres, Robert H.
    Melo, Wilberclay G.
    Rocha, Nata F.
    Santos, Thyago S. R.
    ACTA APPLICANDAE MATHEMATICAE, 2021, 176 (01)
  • [10] Well-Posedness, Blow-up Criteria and Stability for Solutions of the Generalized MHD Equations in Sobolev-Gevrey Spaces
    Robert H. Guterres
    Wilberclay G. Melo
    Natã F. Rocha
    Thyago S. R. Santos
    Acta Applicandae Mathematicae, 2021, 176