Applications of Deep Learning in Biomedicine

被引:450
作者
Mamoshina, Polina [1 ]
Vieira, Armando [2 ]
Putin, Evgeny [1 ]
Zhavoronkov, Alex [1 ]
机构
[1] Johns Hopkins Univ, ETC, Insilico Med Inc, Artificial Intelligence Res, Baltimore, MD 21218 USA
[2] RedZebra Analyt, 1 Qual Court, London WC2A 1HR, England
关键词
deep learning; deep neural networks; RBM; genomics; transcriptomics; artificial intelligence; biomarker development; NEURAL-NETWORKS; EXPRESSION; FEATURES; CANCER; PROTEINS;
D O I
10.1021/acs.molpharmaceut.5b00982
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Increases in throughput and installed base of biomedical research equipment led to a massive accumulation of -omics data known to be highly variable, high-dimensional, and sourced from multiple often incompatible data platforms. While this data may be useful for biomarker identification and drug discovery, the bulk of it remains underutilized. Deep neural networks (DNNs) are efficient algorithms based on the use of compositional layers of neurons, with advantages well matched to the challenges -omics data presents. While achieving state-of-the-art results and even surpassing human accuracy in many challenging tasks, the adoption of deep learning in biomedicine has been comparatively slow. Here, we discuss key features of deep learning that may give this approach an edge over other machine learning methods. We then consider limitations and review a number of applications of deep learning in biomedical studies demonstrating proof of concept and practical utility.
引用
收藏
页码:1445 / 1454
页数:10
相关论文
共 54 条
[1]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[2]  
[Anonymous], BASSET LEARNING REGU
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Intrinsically disordered proteins: regulation and disease [J].
Babu, M. Madan ;
van der Lee, Robin ;
de Groot, Natalia Sanchez ;
Gsponer, Joerg .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2011, 21 (03) :432-440
[5]  
Bakhtiar Ray, 2008, Journal of Pharmacological and Toxicological Methods, V57, P85, DOI 10.1016/j.vascn.2007.10.002
[6]   Exploring heterogeneous biological data sources [J].
Baralis, Elena ;
Fiori, Alessandro .
DEXA 2008: 19TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2008, :647-651
[7]  
Bengio Y., 2015, DEEP LEARNING
[8]  
Bengio Y., 2007, LARGE SCALE KERNEL M, V34, P1, DOI DOI 10.7551/MITPRESS/7496.003.0016
[9]   DECISION TREES DO NOT GENERALIZE TO NEW VARIATIONS [J].
Bengio, Yoshua ;
Delalleau, Olivier ;
Simard, Clarence .
COMPUTATIONAL INTELLIGENCE, 2010, 26 (04) :449-467
[10]   Signaling pathways activation profiles make better markers of cancer than expression of individual genes [J].
Borisov, Nikolay M. ;
Terekhanova, Nadezhda V. ;
Aliper, Alexander M. ;
Venkova, Larisa S. ;
Smirnov, Philip Yu ;
Roumiantsev, Sergey ;
Korzinkin, Mikhail B. ;
Zhavoronkov, Alex A. ;
Buzdin, Anton A. .
ONCOTARGET, 2014, 5 (20) :10198-10205