New results on pseudospectral methods for optimal control

被引:13
|
作者
Tang, Xiaojun [1 ]
Liu, Zhenbao [1 ]
Hu, Yu [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Shaanxi, Peoples R China
关键词
Optimal control; Pseudospectral methods; Equivalence; BARYCENTRIC LAGRANGE INTERPOLATION; SPECTRAL INTERPOLATION; COLLOCATION METHOD; COSTATE ESTIMATION; QUADRATURE NODES; GAUSS-LEGENDRE; WEIGHTS; SUPERCONVERGENCE; COMPUTATION; STABILITY;
D O I
10.1016/j.automatica.2015.11.035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, the equivalence between differential and integral pseudospectral methods is justified from the distinctive perspective of Birkhoff interpolation for collocation at the Jacobi-Gauss and flipped Jacobi-Gauss-Radau points. Furthermore, an exact, efficient, and stable approach is presented for computing the associated pseudospectral differentiation integration matrices even at millions of points. These new results will contribute to the deeper understanding of pseudospectral methods and their practical applications in optimal control. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:160 / 163
页数:4
相关论文
共 50 条
  • [1] Integral fractional pseudospectral methods for solving fractional optimal control problems
    Tang, Xiaojun
    Liu, Zhenbao
    Wang, Xin
    AUTOMATICA, 2015, 62 : 304 - 311
  • [2] A new framework for solving fractional optimal control problems using fractional pseudospectral methods
    Tang, Xiaojun
    Shi, Yang
    Wang, Li-Lian
    AUTOMATICA, 2017, 78 : 333 - 340
  • [3] On the modification and convergence of unconstrained optimal control using pseudospectral methods
    Ghassemi, Hussein
    Maleki, Mohammad
    Allame, Masoud
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2021, 42 (03) : 717 - 743
  • [4] A tutorial on pseudospectral methods for computational optimal control
    Becerra V.M.
    Galvão R.K.H.
    Controle y Automacao, 2010, 21 (03): : 224 - 244
  • [5] A unified framework for the numerical solution of optimal control problems using pseudospectral methods
    Garg, Divya
    Patterson, Michael
    Hager, William W.
    Rao, Anil V.
    Benson, David A.
    Huntington, Geoffrey T.
    AUTOMATICA, 2010, 46 (11) : 1843 - 1851
  • [6] Pseudospectral methods for solving infinite-horizon optimal control problems
    Garg, Divya
    Hager, William W.
    Rao, Anil V.
    AUTOMATICA, 2011, 47 (04) : 829 - 837
  • [7] On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems
    Kang, W.
    Gong, Q.
    Ross, I. M.
    Fahroo, F.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2007, 17 (14) : 1251 - 1277
  • [8] Numerical solution of optimal control problems using multiple-interval integral Gegenbauer pseudospectral methods
    Tang, Xiaojun
    ACTA ASTRONAUTICA, 2016, 121 : 63 - 75
  • [9] Convergence of pseudospectral methods for constrained nonlinear optimal control problems
    Gong, Q
    Ross, IM
    Kang, W
    Fahroo, F
    PROCEEDINGS OF THE SIXTH IASTED INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL, 2004, : 209 - 214
  • [10] A pseudospectral transformation of the covectors of optimal control systems
    Ross, IM
    Fahroo, F
    SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, : 543 - 548