Information and complexity measures for the ring-shaped modified Kratzer potential

被引:1
作者
Yahya, W. A. [1 ,2 ]
Oyewumi, K. J. [1 ]
Sen, K. D. [3 ]
机构
[1] Univ Ilorin, Dept Phys, Theoret Phys Sect, Ilorin, Nigeria
[2] Kwara State Univ, Dept Phys & Mat Sci, Malete, Nigeria
[3] Univ Hyderabad, Sch Chem, Hyderabad 500046, Andhra Pradesh, India
来源
INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY | 2014年 / 53卷 / 10期
关键词
Theoretical chemistry; Fisher information; Shannon entropy; Tsallis entropy; Renyi entropy; Fisher-Shannon complexity; Ring-shaped modified Kratzer potential; STATISTICAL COMPLEXITY; FISHER INFORMATION; SCHRODINGER-EQUATION; HARMONIC-OSCILLATOR; HYDROGENIC SYSTEMS; ENTROPY; SHANNON; POLYNOMIALS; PLANE; MORSE;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, the Fisher information measure, Shannon entropy, Renyi entropy, Tsallis entropy and Fisher-Shannon complexity of the ring-shaped modified Kratzer potential are investigated. The trends in the variation of the information and complexity measures considered for this model quantum system are discussed.
引用
收藏
页码:1307 / 1316
页数:10
相关论文
共 65 条
[1]   Fisher-Shannon plane and statistical complexity of atoms [J].
Angulo, J. C. ;
Antolin, J. ;
Sen, K. D. .
PHYSICS LETTERS A, 2008, 372 (05) :670-674
[2]  
[Anonymous], 2006, FLUCTUATIONS INFORM
[3]   Asymptotics of orthogonal polynomial's entropy [J].
Aptekarev, A. I. ;
Dehesa, J. S. ;
Martinez-Finkelshtein, A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (06) :1355-1365
[4]   SPATIAL ENTROPY OF CENTRAL POTENTIALS AND STRONG ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS [J].
APTEKAREV, AI ;
DEHESA, JS ;
YANEZ, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) :4423-4428
[5]   Quantum information entropies of the eigenstates of the Morse potential [J].
Aydiner, Ekrem ;
Orta, Cenk ;
Sever, Ramazan .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (03) :231-237
[6]   On minimum Fisher information distributions with restricted support and fixed variance [J].
Bercher, J. -F. ;
Vignat, C. .
INFORMATION SCIENCES, 2009, 179 (22) :3832-3842
[7]   Bound state solutions of the Schrodinger equation for modified Kratzer's molecular potential [J].
Berkdemir, C ;
Berkdemir, A ;
Han, JG .
CHEMICAL PHYSICS LETTERS, 2006, 417 (4-6) :326-329
[8]   Electron density and Fisher information of Dirac-Fock atoms [J].
Borgoo, A. ;
Geerlings, P. ;
Sen, K. D. .
PHYSICS LETTERS A, 2008, 372 (31) :5106-5109
[9]   Complexity of Dirac-Fock atom increases with atomic number [J].
Borgoo, A. ;
De Proft, F. ;
Geerlings, P. ;
Sen, K. D. .
CHEMICAL PHYSICS LETTERS, 2007, 444 (1-3) :186-191
[10]   Features of the extension of a statistical measure of complexity to continuous systems -: art. no. 011102 [J].
Catalán, RG ;
Garay, J ;
López-Ruiz, R .
PHYSICAL REVIEW E, 2002, 66 (01)