Impedance Spectroscopy of Ferroelectric Capacitors and Ferroelectric Tunnel Junctions

被引:2
作者
Benatti, Lorenzo [1 ]
Vecchi, Sara [1 ]
Puglisi, Francesco Maria [1 ]
机构
[1] Univ Modena & Reggio Emilia, DIEF, Via P Vivarelli 10-1, I-41125 Modena, Italy
来源
2022 IEEE INTERNATIONAL INTEGRATED RELIABILITY WORKSHOP, IIRW | 2022年
基金
欧盟地平线“2020”;
关键词
Ferroelectric Tunnel Junction; Capacitance; Small signal model; Neuromorphic; MEMORY;
D O I
10.1109/IIRW56459.2022.10032741
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ferroelectric devices are currently considered as a viable option for ultra-low power computing, thanks to their ability to act as memory units and synaptic weights in brain-inspired architectures. A common methodology to assess their response in different conditions (especially the role of material composition and charge trapping in ferroelectric switching) is impedance spectroscopy. However, test devices may be affected by the parasitic impedance of the metal lines contacting the electrodes of the device, which may alter the measured response and the results interpretation. In this work, we investigate the frequency response at different voltages of ferroelectric tunnel junction (FTJ) having a metal-dielectric-ferroelectric-metal (MDFM) stack, starting from the analysis of single layer capacitors (MFM and MDM). A simple but reliable method, validated by physics-based simulations, is proposed to estimate and remove the parasitic access impedance contribution, revealing the intrinsic device response. The method is used to quantify the intrinsic device-level variability of FTJs and to highlight for the first time the relation between the thickness of the dielectric layer, the phase composition of the ferroelectric, and the magnitude of the peak in the frequency response, usually thought as related to charge trapping only.
引用
收藏
页数:6
相关论文
共 33 条
[1]   Impact of the Ferroelectric and Interface Layer Optimization in an MFIS HZO based Ferroelectric Tunnel Junction for Neuromorphic based Synaptic Storage [J].
Ali, Tarek ;
Suenbuel, Ayse ;
Mertens, Konstantin ;
Revello, Ricardo ;
Lederer, Maximilian ;
Lehninger, David ;
Mueller, Franz ;
Kuehnel, Kati ;
Rudolph, Matthias ;
Oehler, Sebastien ;
Hoffmann, Raik ;
Zimmermann, Katrin ;
Biedermann, Kati ;
Schramm, Philipp ;
Czernohorsky, Malte ;
Seidel, Konrad ;
Kaempfe, Thomas ;
Eng, Lukas M. .
2021 SILICON NANOELECTRONICS WORKSHOP (SNW), 2021, :61-62
[2]  
appliedclinicaltrialsonline, About us
[3]   Scaled, Ferroelectric Memristive Synapse for Back-End-of-Line Integration with Neuromorphic Hardware [J].
Begon-Lours, Laura ;
Halter, Mattia ;
Puglisi, Francesco Maria ;
Benatti, Lorenzo ;
Falcone, Donato Francesco ;
Popoff, Youri ;
Davila Pineda, Diana ;
Sousa, Marilyne ;
Offrein, Bert Jan .
ADVANCED ELECTRONIC MATERIALS, 2022, 8 (06)
[4]   Impedance Investigation of MIFM Ferroelectric Tunnel Junction Using a Comprehensive Small-Signal Model [J].
Benatti, Lorenzo ;
Puglisi, Francesco Maria .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2022, 22 (03) :332-339
[5]   Combining Experiments and a Novel Small Signal Model to Investigate the Degradation Mechanisms in Ferroelectric Tunnel Junctions [J].
Benatti, Lorenzo ;
Pavan, Paolo ;
Puglisi, Francesco Maria .
2022 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2022,
[6]   Understanding the Reliability of Ferroelectric Tunnel Junction Operations using an Advanced Small-Signal Model [J].
Benatti, Lorenzo ;
Puglisi, Francesco Maria .
2021 IEEE INTERNATIONAL INTEGRATED RELIABILITY WORKSHOP (IIRW), 2021, :71-76
[7]   2022 roadmap on neuromorphic computing and engineering [J].
Christensen, Dennis, V ;
Dittmann, Regina ;
Linares-Barranco, Bernabe ;
Sebastian, Abu ;
Le Gallo, Manuel ;
Redaelli, Andrea ;
Slesazeck, Stefan ;
Mikolajick, Thomas ;
Spiga, Sabina ;
Menzel, Stephan ;
Valov, Ilia ;
Milano, Gianluca ;
Ricciardi, Carlo ;
Liang, Shi-Jun ;
Miao, Feng ;
Lanza, Mario ;
Quill, Tyler J. ;
Keene, Scott T. ;
Salleo, Alberto ;
Grollier, Julie ;
Markovic, Danijela ;
Mizrahi, Alice ;
Yao, Peng ;
Yang, J. Joshua ;
Indiveri, Giacomo ;
Strachan, John Paul ;
Datta, Suman ;
Vianello, Elisa ;
Valentian, Alexandre ;
Feldmann, Johannes ;
Li, Xuan ;
Pernice, Wolfram H. P. ;
Bhaskaran, Harish ;
Furber, Steve ;
Neftci, Emre ;
Scherr, Franz ;
Maass, Wolfgang ;
Ramaswamy, Srikanth ;
Tapson, Jonathan ;
Panda, Priyadarshini ;
Kim, Youngeun ;
Tanaka, Gouhei ;
Thorpe, Simon ;
Bartolozzi, Chiara ;
Cleland, Thomas A. ;
Posch, Christoph ;
Liu, Shihchii ;
Panuccio, Gabriella ;
Mahmud, Mufti ;
Mazumder, Arnab Neelim .
NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (02)
[8]   HfO2-Based Ferroelectrics Applications in Nanoelectronics [J].
Dragoman, Mircea ;
Aldrigo, Martino ;
Dragoman, Daniela ;
Iordanescu, Sergiu ;
Dinescu, Adrian ;
Modreanu, Mircea .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (05)
[9]   Emergence of associative learning in a neuromorphic inference network [J].
Gandolfi, Daniela ;
Puglisi, Francesco M. ;
Boiani, Giulia M. ;
Pagnoni, Giuseppe ;
Friston, Karl J. ;
D'Angelo, Egidio ;
Mapelli, Jonathan .
JOURNAL OF NEURAL ENGINEERING, 2022, 19 (03)
[10]   Ferroelectric HfZrO2 With Electrode Engineering and Stimulation Schemes as Symmetric Analog Synaptic Weight Element for Deep Neural Network Training [J].
Hsiang, K. -Y. ;
Liao, C. -Y. ;
Chen, K. -T. ;
Lin, Y. -Y. ;
Chueh, C. -Y. ;
Chang, C. ;
Tseng, Y. -J. ;
Yang, Y. -J. ;
Chang, S. T. ;
Liao, M. -H. ;
Hou, T. -H. ;
Wu, C. -H. ;
Ho, C. -C. ;
Chiu, J. -P. ;
Chang, C. -S. ;
Lee, M. H. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (10) :4201-4207