Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

被引:42
|
作者
Woehl, Taylor J. [1 ]
Kashyap, Sanjay [1 ]
Firlar, Emre [1 ]
Perez-Gonzalez, Teresa [2 ]
Faivre, Damien [2 ]
Trubitsyn, Denis [3 ]
Bazylinski, Dennis A. [3 ]
Prozorov, Tanya [1 ]
机构
[1] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA
[2] Max Planck Inst Colloids & Interfaces, Dept Biomat, D-14424 Potsdam, Germany
[3] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
关键词
GOLD NANOPARTICLE UPTAKE; MAGNETOSOME FORMATION; MAGNETITE FORMATION; CELLS; NUCLEATION; VIABILITY; PRESSURE; DIATOMS; GROWTH; BEAM;
D O I
10.1038/srep06854
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. Weinvestigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to similar to 30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Correlative fluorescence microscopy, transmission electron microscopy and secondary ion mass spectrometry (CLEM-SIMS) for cellular imaging
    Lange, Felix
    Aguei-Gonzalez, Paola
    Riedel, Dietmar
    Phan, Nhu T. N.
    Jakobs, Stefan
    Rizzoli, Silvio O.
    PLOS ONE, 2021, 16 (05):
  • [22] Revealing Reactions between the Electron Beam and Nanoparticle Capping Ligands with Correlative Fluorescence and Liquid-Phase Electron Microscopy
    Dissanayake, Thilini U.
    Wang, Mei
    Woehl, Taylor J.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (31) : 37553 - 37562
  • [23] ELECTRON-MICROSCOPY STUDY OF MAGNETOSOMES IN 2 CULTURED VIBRIOID MAGNETOTACTIC BACTERIA
    MELDRUM, FC
    MANN, S
    HEYWOOD, BR
    FRANKEL, RB
    BAZYLINSKI, DA
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1993, 251 (1332) : 237 - 242
  • [24] Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples
    Benjamin G Kopek
    Maria G Paez-Segala
    Gleb Shtengel
    Kem A Sochacki
    Mei G Sun
    Yalin Wang
    C Shan Xu
    Schuyler B van Engelenburg
    Justin W Taraska
    Loren L Looger
    Harald F Hess
    Nature Protocols, 2017, 12 : 916 - 946
  • [25] Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples
    Kopek, Benjamin G.
    Paez-Segala, Maria G.
    Shtengel, Gleb
    Sochacki, Kem A.
    Sun, Mei G.
    Wang, Yalin
    Xu, C. Shan
    van Engelenburg, Schuyler B.
    Taraska, Justin W.
    Looger, Loren L.
    Hess, Harald F.
    NATURE PROTOCOLS, 2017, 12 (05) : 916 - 946
  • [26] Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: Strategy for culture-independent study
    Li, Jinhua
    Liu, Peiyu
    Menguy, Nicolas
    Benzerara, Karim
    Bai, Jinling
    Zhao, Xiang
    Leroy, Eric
    Zhang, Chaoqun
    Zhang, Heng
    Liu, Jiawei
    Zhang, Rongrong
    Zhu, Kelei
    Roberts, Andrew P.
    Pan, Yongxin
    ENVIRONMENTAL MICROBIOLOGY, 2022, 24 (11) : 5019 - 5038
  • [27] Magnetosomes and magnetite crystals produced by magnetotactic bacteria as resolved by atomic force microscopy and transmission electron microscopy
    Oestreicher, Zachery
    Valverde-Tercedor, Carmen
    Chen, Lijun
    Jimenez-Lopez, Concepcion
    Bazylinski, Dennis A.
    Casillas-Ituarte, Nadia N.
    Lower, Steven K.
    Lower, Brian H.
    MICRON, 2012, 43 (12) : 1331 - 1335
  • [28] Rationalizing Acid Zeolite Performance on the Nanoscale by Correlative Fluorescence and Electron Microscopy
    Van Loon, Jordi
    Janssen, Kris P. F.
    Franklin, Thomas
    Kubarev, Alexey V.
    Steele, Julian A.
    Debroye, Elke
    Breynaert, Eric
    Martens, Johan A.
    Roeffaers, Maarten B. J.
    ACS CATALYSIS, 2017, 7 (08): : 5234 - 5242
  • [29] High-resolution correlative imaging in ultrafast electron microscopy
    Kim, Ye-Jin
    Park, Won-Woo
    Nho, Hak-Won
    Kwon, Oh-Hoon
    ADVANCES IN PHYSICS-X, 2024, 9 (01):
  • [30] Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy
    Liv, Nalan
    Zonnevylle, A. Christiaan
    Narvaez, Angela C.
    Effting, Andries P. J.
    Voorneveld, Philip W.
    Lucas, Miriam S.
    Hardwick, James C.
    Wepf, Roger A.
    Kruit, Pieter
    Hoogenboom, Jacob P.
    PLOS ONE, 2013, 8 (02):