Unique responses of three highly salt-tolerant wild Vigna species against salt stress

被引:18
|
作者
Yoshida, Junko [1 ,2 ]
Tomooka, Norihiko [3 ]
Khaing, Thet Yee [4 ]
Shantha, P. G. Sunil [5 ]
Naito, Hitoshi [6 ]
Matsuda, Yosuke [1 ]
Ehara, Hiroshi [2 ,7 ,8 ]
机构
[1] Mie Univ, Grad Sch Bioresources, Tsu, Mie, Japan
[2] Nagoya Univ, Grad Sch Bioagr Sci, Nagoya, Aichi, Japan
[3] Natl Agr & Food Res Org, Genet Resources Ctr, Tsukuba, Ibaraki, Japan
[4] Minist Agr & Irrigat, Dept Agr Res, Seed Bank, Biotechnol Plant Genet Resources & Plant Protect, Naypyidaw, Myanmar
[5] Plant Genet Resources Ctr, Dept Agr, Gannoruwa, Sri Lanka
[6] Kurashiki Univ Sci & Arts, Coll Life Sci, Kurashiki, Okayama, Japan
[7] Nagoya Univ, Int Ctr Res & Educ Agr, Nagoya, Aichi, Japan
[8] Nagoya Univ, Appl Social Syst Inst Asia, Nagoya, Aichi, Japan
基金
日本学术振兴会;
关键词
Genus Vigna; growth analysis; Na+ absorption and translocation; photosynthetic rate; salt avoidance; salt tolerance; RESISTANCE; SALINITY; CROP; DIVERSITY; RELATIVES; PLANTS; ROOTS; RICH;
D O I
10.1080/1343943X.2019.1698968
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The genus Vigna contains important crops such as cowpea and mungbean. Wild Vigna showing higher salt tolerance than Vigna crops were screened and their tolerance mechanisms are discussed. Primary screening using 7 Vigna crops and 23 wild Vigna under 300 mM NaCl selected V. luteola, V. marina and V. vexillata. A study under different salt concentrations revealed the highest survival ability of V. marina. Diversity of salt tolerance in each species was revealed using a total of 230 accessions. Growth and physiological responses under 150 mM NaCl were then compared using two selected accessions from each species. The pattern of Na+ accumulation in roots, stems and leaves suggested that V. vexillata (V1) and V. luteola (L8, L9) are 'Na+ excluder' type, while V. marina (M1, M4) is 'Na+ includer' type. V. luteola (L8, L9) showed the highest dry matter production under control condition and well-maintained shoot dry weight under salt stress. Interestingly, V. luteola (L9) accumulated the highest Na+ in roots (3000 mu M g(-1)) and increased root dry weight under salt stress, which might work as Na+ reservoir restricting Na+ transition to the leaves, leading to the increased photosynthetic rate. V. luteola has great potential in areas where moderate salt damage occurs. V. marina (M1, M4) accumulated Na+ at high level in roots, stem, and leaves. Under salt stress, they increased stomatal conductance, transpiration rate, and photosynthetic rate, which suggested the adaptational regulation of aquaporin gene expression. V. marina will be useful as food, pasture and phytoremediation legumes in highly salt-damaged areas.
引用
收藏
页码:114 / 128
页数:15
相关论文
共 50 条
  • [11] Transcriptional analysis of salt-responsive genes to salinity stress in three salt-tolerant and salt-sensitive Barely cultivars
    Mohammadi, Seyyed Abolghasem
    Hamian, Samira
    Vahed, Mohammad Moghaddam
    Bandehagh, Ali
    Gohari, Gholamreza
    Janda, Tibor
    SOUTH AFRICAN JOURNAL OF BOTANY, 2021, 141 : 457 - 465
  • [12] Salt-tolerant and -sensitive seedlings exhibit noteworthy differences in lipolytic events in response to salt stress
    Gogna, Mansi
    Bhatla, Satish C.
    PLANT SIGNALING & BEHAVIOR, 2020, 15 (04)
  • [13] Growth Response to Ionic and Osmotic Stress of NaCl in Salt-tolerant and Salt-sensitive Maize
    Zhao, Ke-Fu
    Song, Jie
    Fan, Hai
    Zhou, San
    Zhao, Meng
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2010, 52 (05) : 468 - 475
  • [14] Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress
    Sultana, Shahnaz
    Paul, Sumonta C.
    Parveen, Samia
    Alam, Saiful
    Rahman, Naziza
    Jannat, Bushra
    Hoque, Sirajul
    Rahman, Mohammad Tariqur
    Karim, Muhammad Manjurul
    CANADIAN JOURNAL OF MICROBIOLOGY, 2020, 66 (02) : 144 - 160
  • [15] The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars
    Walitang, Denver I.
    Kim, Chang-Gi
    Kim, Kiyoon
    Kang, Yeongyeong
    Kim, Young Kee
    Sa, Tongmin
    BMC PLANT BIOLOGY, 2018, 18
  • [16] The Effect of Ventilation on in vitro Response of Seedlings of the Cultivated Tomato and its Wild Salt-tolerant Relative Lycopersicon pennellii to Salt Stress
    David Mills
    Moshe Tal
    Plant Cell, Tissue and Organ Culture, 2004, 78 : 209 - 216
  • [17] Physiological and Biochemical Responses to Salt Stress of Alfalfa Populations Selected for Salinity Tolerance and Grown in Symbiosis with Salt-Tolerant Rhizobium
    Bertrand, Annick
    Gatzke, Craig
    Bipfubusa, Marie
    Levesque, Vicky
    Chalifour, Francois P.
    Claessens, Annie
    Rocher, Solen
    Tremblay, Gaetan F.
    Beauchamp, Chantal J.
    AGRONOMY-BASEL, 2020, 10 (04):
  • [18] The effect of ventilation on in vitro response of seedlings of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt stress
    Mills, D
    Tal, M
    PLANT CELL TISSUE AND ORGAN CULTURE, 2004, 78 (03) : 209 - 216
  • [19] Metabolic Regulation and Molecular Mechanism of Salt Stress Response in Salt-Tolerant Astragalus mongholicus
    Liu, Yuxiao
    Sheng, Jinhua
    Yang, Jiaqing
    Li, Xingcong
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [20] In vitro and in vivo screening for the identification of salt-tolerant sugarcane (Saccharum officinarum L.) clones: molecular, biochemical, and physiological responses to salt stress
    Laksana, Chanakan
    Sophiphun, Onsulang
    Chanprame, Sontichai
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2023, 30 (06)