共 50 条
High-Throughput Single-Molecule Spectroscopy Resolves the Conformational Isomers of BODIPY Chromophores
被引:12
|作者:
Sansalone, Lorenzo
[1
]
Zhang, Yang
[1
,2
]
Mazza, Mercedes M. A.
[1
]
Davis, Janel L.
[2
]
Song, Ki-Hee
[2
]
Captain, Burjor
[1
]
Zhang, Hao F.
[2
]
Raymo, Francisco M.
[1
]
机构:
[1] Univ Miami, Dept Chem, Lab Mol Photon, 1301 Mem Dr, Coral Gables, FL 33146 USA
[2] Northwestern Univ, Dept Biomed Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA
基金:
美国国家卫生研究院;
美国国家科学基金会;
关键词:
MICROSCOPY;
DYNAMICS;
FLUCTUATIONS;
EXCITATION;
TRACKING;
D O I:
10.1021/acs.jpclett.9b02250
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
A borondipyrromethene (BODIPY) chromophore is connected to a benzoxazole, benzothiazole, or nitrobenzothiazole heterocycle through an olefinic bridge with trans configuration. Rotation about the two [C-C] bonds flanking the olefinic bridge occurs with fast kinetics in solution, leading to the equilibration of four conformational isomers for each compound. Ensemble spectroscopic measurements in solutions fail to distinguish the coexisting isomers. They reveal instead averaged absorption and emission bands with dependence of the latter on the excitation wavelength. Using high-throughput single-molecule spectroscopy, two main populations of single molecules with distinct spectral centroids are observed for each compound on glass substrates. Computational analyses suggest the two populations of molecules to be conformational isomers with antiperiplanar and periplanar arrangements of the BODIPY chromophores about its [C-C] bond to the olefinic bridge. Thus, statistical analysis of multiple single-molecule emission spectra can discriminate stereoisomers that would otherwise be impossible to distinguish by ensemble measurements alone.
引用
收藏
页码:6807 / 6812
页数:11
相关论文