A divergence-free weak Galerkin method for quasi-Newtonian Stokes flows

被引:18
|
作者
Zheng, XiaoBo [1 ]
Chen, Gang [1 ]
Xie, XiaoPing [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
quasi-Newtonian Stokes equation; weak Galerkin method; divergence-free; optimal error estimate; FINITE-ELEMENT APPROXIMATION; 2ND-ORDER ELLIPTIC PROBLEMS; NUMERICAL-ANALYSIS; ERROR ANALYSIS; A-PRIORI; MODEL; EQUATIONS; CARREAU; BOUNDS;
D O I
10.1007/s11425-016-0354-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1 ( k >= 0) and k for the velocity and pressure in the interior of elements, respectively, and piecewise polynomials of degrees k and k + 1 for the boundary parts of the velocity and pressure, respectively. Wellposedness of the discrete scheme is established. The method yields a globally divergence-free velocity approximation. Optimal priori error estimates are derived for the velocity gradient and pressure approximations. Numerical results are provided to confirm the theoretical results.
引用
收藏
页码:1515 / 1528
页数:14
相关论文
共 50 条