A divergence-free weak Galerkin method for quasi-Newtonian Stokes flows

被引:18
|
作者
Zheng, XiaoBo [1 ]
Chen, Gang [1 ]
Xie, XiaoPing [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
quasi-Newtonian Stokes equation; weak Galerkin method; divergence-free; optimal error estimate; FINITE-ELEMENT APPROXIMATION; 2ND-ORDER ELLIPTIC PROBLEMS; NUMERICAL-ANALYSIS; ERROR ANALYSIS; A-PRIORI; MODEL; EQUATIONS; CARREAU; BOUNDS;
D O I
10.1007/s11425-016-0354-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1 ( k >= 0) and k for the velocity and pressure in the interior of elements, respectively, and piecewise polynomials of degrees k and k + 1 for the boundary parts of the velocity and pressure, respectively. Wellposedness of the discrete scheme is established. The method yields a globally divergence-free velocity approximation. Optimal priori error estimates are derived for the velocity gradient and pressure approximations. Numerical results are provided to confirm the theoretical results.
引用
收藏
页码:1515 / 1528
页数:14
相关论文
共 50 条
  • [1] A divergence-free weak Galerkin method for quasi-Newtonian Stokes flows
    XiaoBo Zheng
    Gang Chen
    XiaoPing Xie
    Science China Mathematics, 2017, 60 : 1515 - 1528
  • [2] A divergence-free weak Galerkin method for quasi-Newtonian Stokes flows
    ZHENG XiaoBo
    CHEN Gang
    XIE XiaoPing
    Science China(Mathematics), 2017, 60 (08) : 1515 - 1528
  • [3] MIXED DISCONTINUOUS GALERKIN METHOD FOR QUASI-NEWTONIAN STOKES FLOWS
    Qian, Yanxia
    Wang, Fei
    Yan, Wenjing
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (03): : 885 - 910
  • [4] A MIXED VIRTUAL ELEMENT METHOD FOR QUASI-NEWTONIAN STOKES FLOWS
    Caceres, Ernesto
    Gatica, Gabriel N.
    Sequeira, Filander A.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) : 317 - 343
  • [5] Analysis of the Staggered DG Method for the Quasi-Newtonian Stokes flows
    Liu, Jingyu
    Liu, Yang
    Zhao, Lina
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (01)
  • [6] ROBUST GLOBALLY DIVERGENCE-FREE WEAK GALERKIN METHODS FOR STOKES EQUATIONS
    Chen, Gang
    Feng, Minfu
    Xie, Xiaoping
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2016, 34 (05) : 549 - 572
  • [7] Analysis of an Augmented HDG Method for a Class of Quasi-Newtonian Stokes Flows
    Gabriel N. Gatica
    Filánder A. Sequeira
    Journal of Scientific Computing, 2015, 65 : 1270 - 1308
  • [8] Analysis of an Augmented HDG Method for a Class of Quasi-Newtonian Stokes Flows
    Gatica, Gabriel N.
    Sequeira, Filander A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) : 1270 - 1308
  • [9] A globally divergence-free weak Galerkin method for Brinkman equations
    Zhang, Li
    Feng, Minfu
    Zhang, Jian
    APPLIED NUMERICAL MATHEMATICS, 2019, 137 : 213 - 229
  • [10] An Algebraic Preconditioner for the Exactly Divergence-Free Discontinuous Galerkin Method for Stokes
    Rhebergen, Sander
    Southworth, Ben S.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2025, 41 (02)