Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations

被引:26
作者
Li, YanYan [1 ,2 ]
Luc Nguyen [3 ,4 ]
Wang, Bo [5 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[3] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[4] Univ Oxford, St Edmund Hall, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[5] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
关键词
STRONG MAXIMUM PRINCIPLE; VISCOSITY SOLUTIONS; CONFORMALLY INVARIANT; HARNACK INEQUALITIES; SINGULAR SOLUTIONS; YAMABE PROBLEM; EXISTENCE; EIGENVALUES; SETS;
D O I
10.1007/s00526-018-1369-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish interior Lipschitz regularity for continuous viscosity solutions of fully nonlinear, conformally invariant, degenerate elliptic equations. As a by-product of our method, we also prove a weak form of the strong comparison principle, which we refer to as the principle of propagation of touching points, for operators of the form which are non-decreasing in .
引用
收藏
页数:29
相关论文
共 45 条
  • [1] Amendola ME, 2013, DIFFER INTEGRAL EQU, V26, P845
  • [2] [Anonymous], 1988, Rev. Mat. Iberoam.
  • [3] [Anonymous], 1992, Bull. Amer. Math. Soc.
  • [4] On the strong maximum principle for fully nonlinear degenerate elliptic equations
    Bardi, M
    Da Lio, F
    [J]. ARCHIV DER MATHEMATIK, 1999, 73 (04) : 276 - 285
  • [5] Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators
    Berestycki, Henri
    Dolcetta, Italo Capuzzo
    Porretta, Alessio
    Rossi, Luca
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (05): : 1276 - 1293
  • [6] Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators
    Birindelli, I.
    Demengel, F.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2007, 6 (02) : 335 - 366
  • [7] Birindelli I., 2004, Ann. Fac. Sci. Toulouse Math., V13, P261, DOI 10.5802/afst.1070
  • [8] Cabre X., 1995, Topol. Methods Nonlinear Anal., V6, P31, DOI DOI 10.12775/TMNA.1995.030
  • [9] THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN
    CAFFARELLI, L
    NIRENBERG, L
    SPRUCK, J
    [J]. ACTA MATHEMATICA, 1985, 155 (3-4) : 261 - 301
  • [10] Some Remarks on Singular Solutions of Nonlinear Elliptic Equations III: Viscosity Solutions Including Parabolic Operators
    Caffarelli, Luis
    Li, Yanyan
    Nirenberg, Louis
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (01) : 109 - 143