Quasi-Newton particle Metropolis-Hastings

被引:4
作者
Dahlin, Johan [1 ]
Lindsten, Fredrik [2 ]
Schon, Thomas B. [3 ]
机构
[1] Linkoping Univ, Dept Elect Engn, S-58183 Linkoping, Sweden
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1TN, England
[3] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
关键词
Bayesian parameter inference; state space models; approximate Bayesian computations; particle Markov chain Monte Carlo; alpha-stable distributions;
D O I
10.1016/j.ifacol.2015.12.258
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Particle Metropolis-Hastings enables Bayesian parameter inference in general nonlinear state space models (SSMs). However, in marry imiplementations a random walk proposal is used and this Call result in poor mixing if not tuned correctly using tedious pilot runs. Therefore, we consider a new proposal inspired by quasi-Newton algorithms that may achieve similar (or better) mixing with less tuning. An advantage compared to other Hessian based proposals, is that it only requires estimates of the gradient of the log-posterior. A possible application is parameter inference in the challenging class of SSMs with intractable likelihoods. We exemplify this application and the benefits of the new proposal by modelling log-returns of future contracts on coffee by a stochastic volatility model with a: stable observations. (C) 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:981 / 986
页数:6
相关论文
共 20 条
[1]   Particle Markov chain Monte Carlo methods [J].
Andrieu, Christophe ;
Doucet, Arnaud ;
Holenstein, Roman .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :269-342
[2]   THE PSEUDO-MARGINAL APPROACH FOR EFFICIENT MONTE CARLO COMPUTATIONS [J].
Andrieu, Christophe ;
Roberts, Gareth O. .
ANNALS OF STATISTICS, 2009, 37 (02) :697-725
[3]  
[Anonymous], 2003, Stable distributions: models for heavy-tailed data
[4]  
Bornn L., 2014, ARXIV14046298V1
[5]  
Dahlin J., 2015, ARXIV150606975V1
[6]   Particle Metropolis-Hastings using gradient and Hessian information [J].
Dahlin, Johan ;
Lindsten, Fredrik ;
Schon, Thomas B. .
STATISTICS AND COMPUTING, 2015, 25 (01) :81-92
[7]   Parameter Estimation for Hidden Markov Models with Intractable Likelihoods [J].
Dean, Thomas A. ;
Singh, Sumeetpal S. ;
Jasra, Ajay ;
Peters, Gareth W. .
SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) :970-987
[8]  
Doucet A., 2009, The Oxford Handbook of Nonlinear Filtering, V12, P656
[9]  
Jasra A., 2015, INT STAT RE IN PRESS
[10]   Filtering via approximate Bayesian computation [J].
Jasra, Ajay ;
Singh, Sumeetpal S. ;
Martin, James S. ;
McCoy, Emma .
STATISTICS AND COMPUTING, 2012, 22 (06) :1223-1237