Robust Tracking Control of Flexible Joint with Nonlinear Friction and Uncertainties Using Wavelet Neural Networks

被引:4
作者
Chu Ming [1 ]
Jia Qing-xuan [1 ]
Sun Han-xu [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100088, Peoples R China
来源
ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS | 2009年
关键词
flexible joint; robust control; nonlinear friction compensation; wavelet neural networks;
D O I
10.1109/ICICTA.2009.219
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new combination method for the robust high precision position control of flexible joint with nonlinear friction and uncertainties compensation is proposed in this paper. The global control system is designed based on backstepping like technique in order to suppress the flexibility and disturbance, and the wavelet neural networks approach is utilized especially to estimate the nonlinear terms including friction and uncertainties locally without predicting the upper bound. From the Lyapunov stability analysis, adaptive laws which are used to update the network weights are induced. The stability of the overall closed loop system is proved to be UUB stable. Finally, the computor simulation results show the good position tracking performance and robustness of the proposed control strategy.
引用
收藏
页码:878 / 883
页数:6
相关论文
共 15 条
[1]  
BONSIGNORE A, 1999, ASME, V121, P298
[2]  
CHATLATANAGULCH.W, 2005, P IEEE CCA TOR, P601, DOI DOI 10.1109/CCA.2005.1507192
[3]  
CHIEN MC, 2007, P IEEE S IND EL APR, P1032, DOI DOI 10.1109/TIE.2007.893054
[4]  
GOMES SCP, 2006, MECHATRONICS IEE FEB, P75, DOI DOI 10.1109/TMECH.2005.859837
[5]  
HUANG AC, 2004, CONTROL SYSTEMS SEP, P770, DOI DOI 10.1109/TCST.2004.826968
[6]  
LIN CK, 2002, P IEEE S SYST CONTR, P316, DOI DOI 10.1049/IP-ETA:20020519
[7]  
MALKI HA, 1997, CONTROL SYSTEMS MAY, P371, DOI DOI 10.1109/87.572133
[8]  
Matkurbanov P, 2006, 2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, P3690
[9]  
Oh JH, 1997, IEEE INT CONF ROBOT, P3435, DOI 10.1109/ROBOT.1997.606867
[10]   Training wavelet networks for nonlinear dynamic input-output modeling [J].
Oussar, Y ;
Rivals, I ;
Personnaz, L ;
Dreyfus, G .
NEUROCOMPUTING, 1998, 20 (1-3) :173-188