Chaos in a fractional order modified Duffing system

被引:132
作者
Ge, Zheng-Ming [1 ]
Ou, Chan-Yi [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Mech Engn, Hsinchu 300, Taiwan
关键词
D O I
10.1016/j.chaos.2005.11.059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
in this paper, the chaotic behaviors in a fractional order modified Duffing system are studied numerically by phase portraits, Poincare maps and bifurcation diagrams. Linear transfer function approximations of the fractional integrator block are calculated for a set of fractional orders in (0, 1], based on frequency domain arguments. The total system orders found for chaos to exist in such systems are 1.8, 1.9, 2.0 and 2.1. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:262 / 291
页数:30
相关论文
共 27 条
  • [1] Fractional-order Wien-bridge oscillator
    Ahmad, W
    El-khazali, R
    Elwakil, AS
    [J]. ELECTRONICS LETTERS, 2001, 37 (18) : 1110 - 1112
  • [2] On nonlinear control design for autonomous chaotic systems of integer and fractional orders
    Ahmad, WM
    Harb, AM
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 18 (04) : 693 - 701
  • [3] Chaos in fractional-order autonomous nonlinear systems
    Ahmad, WM
    Sprott, JC
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 16 (02) : 339 - 351
  • [4] Chaotic behavior in noninteger-order cellular neural networks
    Arena, P
    Fortuna, L
    Porto, D
    [J]. PHYSICAL REVIEW E, 2000, 61 (01): : 776 - 781
  • [5] Bifurcation and chaos in noninteger order cellular neural networks
    Arena, P
    Caponetto, R
    Fortuna, L
    Porto, D
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07): : 1527 - 1539
  • [6] ARENA P, 1997, P ECCTD BUD, P1259
  • [7] FRACTAL SYSTEM AS REPRESENTED BY SINGULARITY FUNCTION
    CHAREF, A
    SUN, HH
    TSAO, YY
    ONARAL, B
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) : 1465 - 1470
  • [8] Chen YQ, 2002, IEEE T CIRCUITS-I, V49, P363, DOI 10.1109/81.989172
  • [9] Fractional integral representation of master equation
    Elwakil, SA
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 1999, 10 (09) : 1545 - 1548
  • [10] Chaotic dynamics of the fractional Lorenz system
    Grigorenko, I
    Grigorenko, E
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (03)