Continuous-Space Gaussian Process Regression and Generalized Wiener Filtering with Application to Learning Curves

被引:0
作者
Sarkka, Simo [1 ]
Solin, Arno [1 ]
机构
[1] Aalto Univ, Dept Biomed Engn & Computat Sci, Espoo, Finland
来源
IMAGE ANALYSIS, SCIA 2013: 18TH SCANDINAVIAN CONFERENCE | 2013年 / 7944卷
关键词
Gaussian process regression; continuous-space measurement; Wiener filter; learning curve;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gaussian process regression is a machine learning paradigm, where the regressor functions are modeled as realizations from an a priori Gaussian process model. We study abstract continuous-space Gaussian regression problems where the training set covers the whole input space instead of consisting of a finite number of distinct points. The model can be used for analyzing theoretical properties of Gaussian process regressors. In this paper, we present the general continuous-space Gaussian process regression equations and discuss their close connection with Wiener filtering. We apply the results to estimation of learning curves as functions of training set size and input dimensionality.
引用
收藏
页码:172 / 181
页数:10
相关论文
共 11 条
[1]  
Gonzalez R.C., 2002, DIGITAL IMAGE PROCES
[2]  
Opper M, 1999, ADV NEUR IN, V11, P302
[3]  
Opper M., 1997, THEORETICAL ASPECTS
[4]  
Papoulis A., 1984, PROBABILITY RANDOM V
[5]  
Särkkä S, 2011, LECT NOTES COMPUT SC, V6791, P201, DOI 10.1007/978-3-642-21735-7_25
[6]  
Särkkä S, 2011, LECT NOTES COMPUT SC, V6792, P151, DOI 10.1007/978-3-642-21738-8_20
[7]  
Seeger Matthias, 2004, Int J Neural Syst, V14, P69, DOI 10.1142/S0129065704001899
[8]   Learning curves for Gaussian process regression: Approximations and bounds [J].
Sollich, P ;
Halees, A .
NEURAL COMPUTATION, 2002, 14 (06) :1393-1428
[9]  
Sollich P., 2005, Advances in Neural Information Processing Systems, P1313
[10]  
Van Trees H.L., 1968, Detection, estimation, and modulation theory. Part I: Detection, estimation and filtering theory