A generalization of Duhamel's principle for differential equations of fractional order

被引:20
作者
Umarov, S. R. [1 ]
Saidamatov, E. M. [1 ]
机构
[1] Tashkent State Univ, Tashkent 700095, Uzbekistan
关键词
Cauchy Problem; Fractional Order; DOKLADY Mathematic; Fractional Differential Equation; Pseudodifferential Operator;
D O I
10.1134/S1064562407010267
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A generalization of Duhamel's classical principle to differential equations of fractional order is discussed. It is found that Duhamel's principle reduces the Cauchy problem for inhomogeneous linear partial differential equations, to the Cauchy problem for the corresponding homogeneous equation. Result shows that the inhomogeneous problems, can be solved by the use and estimation of Green's functions or application of a combination of some integral transformations and Duhamel's classification principle.
引用
收藏
页码:94 / 96
页数:3
相关论文
共 11 条
[1]  
Anh V., 2003, J APPL MATH STOCH AN, V16, P97, DOI DOI 10.1155/S1048953303000078
[2]  
BASHLEKOVA E, 1998, FRACT CALCULUS APPL, V1, P255
[3]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[4]  
Dzhrbashyan M. M., 1966, Integral Transformations and Representations of Functions in the Complex Domain
[5]  
Gorenflo R, 2000, Fract Calc Appl Anal, V3, P249
[6]  
Gorenflo R., 1997, FRACTAL FRACT, V378, P223, DOI DOI 10.1007/978-3-7091-2664-6_5
[7]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[8]  
Podlubny I., 1999, Fractional Di ff erential Equations
[9]  
Samko S.G., 1987, Integrals and derivatives of fractional order and some of their applications
[10]  
Tikhonov A. N., 1966, Equations of Mathematical Physics